精品国产一级毛片大全,毛片一级在线,毛片免费观看的视频在线,午夜毛片福利

我要投稿 投訴建議

數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計

時間:2024-03-05 17:26:25 海潔 教學(xué)設(shè)計 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計(精選8篇)

  作為一無名無私奉獻(xiàn)的教育工作者,通常需要準(zhǔn)備好一份教學(xué)設(shè)計,借助教學(xué)設(shè)計可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么應(yīng)當(dāng)如何寫教學(xué)設(shè)計呢?下面是小編精心整理的數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計,歡迎閱讀與收藏。

數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計(精選8篇)

  數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計 1

  【知識與技能】

  1.掌握二次函數(shù)圖象與x軸的交點橫坐標(biāo)與一元二次方程兩根的關(guān)系

  2.理解二次函數(shù)圖象與x軸的交點的個數(shù)與一元二次方程根的個數(shù)的關(guān)系

  3.會用二次函數(shù)圖象求一元二次方程的近似根

  4.能用二次函數(shù)與一元二次方程的關(guān)系解決綜合問題

  【過程與方法】

  經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會二次函數(shù)與方程之間的聯(lián)系,進(jìn)一步體會數(shù)形結(jié)合的思想

  【情感態(tài)度】

  通過自主學(xué)習(xí),小組合作,探索出二次函數(shù)與一元二次方程的關(guān)系,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性,激發(fā)熱愛數(shù)學(xué)的情感

  【教學(xué)重點】

 、倮斫舛魏瘮(shù)與一元二次方程的聯(lián)系

  ②求一元二次方程的近似根

  【教學(xué)難點】

  一元二次方程與二次函數(shù)的綜合應(yīng)用

  一、情境導(dǎo)入,初步認(rèn)識

  1.一元二次方程ax2+bx+c=0的實數(shù)根,就是二次函數(shù)y=ax2+bx+c,當(dāng) y=0 時,自變量x的值,它是二次函數(shù)的圖象與x軸交點的 橫坐標(biāo) .

  2.拋物線y=ax2+bx+c與x軸交點個數(shù)與一元二次方程ax2+bx+c=0根的'判別式的關(guān)系:當(dāng)b2-4ac<0時,拋物線與x軸 無 交點;當(dāng)b2-4ac=0時,拋物線與x軸有 一 個交點;當(dāng)b2-4ac>0時,拋物線與x軸有 兩 個交點

  學(xué)生回答,教師點評

  二、思考探究,獲取新知

  探究1 求拋物線y=ax2+bx+c與x軸的交點

  例1 求拋物線y=x2-2x-3與x軸交點的橫坐標(biāo)

  【分析】拋物線y=x2-2x-3與x軸相交時,交點的縱坐標(biāo)y=0,轉(zhuǎn)化為求方程x2-2x-3=0的根

  解:因為方程x2-2x-3=0的兩個根是x1=3,x2=-1,所以拋物線y=x2-2x-3與x軸交點的橫坐標(biāo)分別是3或-1

  【教學(xué)說明】求拋物線與x軸的交點坐標(biāo),首先令y=0,把二次函數(shù)轉(zhuǎn)化為一元二次方程,求交點的橫坐標(biāo)就是求此方程的根

  探究2 拋物線與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系思考:

 。1)你能說出函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點個數(shù)的情況嗎?猜想交點個數(shù)和方程ax2+bx+c=0(a≠0)的根的個數(shù)有何關(guān)系?

  (2)一元二次方程ax2+bx+c=0(a≠0)的根的個數(shù)由什么來判斷?

  數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計 2

  學(xué)習(xí)目標(biāo)

  1.結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系;

  2.掌握零點存在的判定定理

  學(xué)習(xí)過程

  一、課前準(zhǔn)備

 。A(yù)習(xí)教材P86~P88,找出疑惑之處

  復(fù)習(xí)1:一元二次方程+bx+c=0(a0)的解法.

  判別式=

  當(dāng)0,方程有兩根,為;

  當(dāng)0,方程有一根,為;

  當(dāng)0,方程無實根

  復(fù)習(xí)2:方程+bx+c=0(a0)的根與二次函數(shù)y=ax+bx+c(a0)的圖象之間有什么關(guān)系?

  判別式一元二次方程二次函數(shù)圖象

  二、新課導(dǎo)學(xué)

  ※學(xué)習(xí)探究

  探究任務(wù)一:函數(shù)零點與方程的根的關(guān)系

  問題:

 、俜匠痰慕鉃,函數(shù)的圖象與x軸有個交點,坐標(biāo)為

 、诜匠痰慕鉃椋瘮(shù)的圖象與x軸有個交點,坐標(biāo)為

 、鄯匠痰慕鉃,函數(shù)的圖象與x軸有個交點,坐標(biāo)為

  根據(jù)以上結(jié)論,可以得到:

  一元二次方程的根就是相應(yīng)二次函數(shù)的圖象與x軸交點的

  你能將結(jié)論進(jìn)一步推廣到嗎?

  新知:對于函數(shù),我們把使的實數(shù)x叫做函數(shù)的零點(zeropoint)

  反思:

  函數(shù)的零點、方程的實數(shù)根、函數(shù)的圖象與x軸交點的橫坐標(biāo),三者有什么關(guān)系?

  試試:

 。1)函數(shù)的零點為;

 。2)函數(shù)的零點為

  小結(jié):方程有實數(shù)根函數(shù)的圖象與x軸有交點函數(shù)有零點

  探究任務(wù)二:零點存在性定理

  問題:

  ①作出的圖象,求的值,觀察和的符號

  ②觀察下面函數(shù)的圖象,在區(qū)間上零點;0;

  在區(qū)間上零點;0;

  在區(qū)間上零點;0

  新知:如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的`一條曲線,并且有<0,那么,函數(shù)在區(qū)間內(nèi)有零點,即存在,使得,這個c也就是方程的根

  討論:零點個數(shù)一定是一個嗎?逆定理成立嗎?試結(jié)合圖形來分析

  ※典型例題

  例1求函數(shù)的零點的個數(shù)

  變式:求函數(shù)的零點所在區(qū)間

  小結(jié):函數(shù)零點的求法

 、俅鷶(shù)法:求方程的實數(shù)根;

 、趲缀畏ǎ簩τ诓荒苡们蟾降姆匠蹋梢詫⑺c函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點

  ※動手試試

  求函數(shù)的零點所在的大致區(qū)間

  三、總結(jié)提升

  ※學(xué)習(xí)小結(jié)

 、倭泓c概念;

 、诹泓c、與x軸交點、方程的根的關(guān)系;

  ③零點存在性定理

  ※知識拓展

  圖象連續(xù)的函數(shù)的零點的性質(zhì):

 。1)函數(shù)的圖象是連續(xù)的,當(dāng)它通過零點時(非偶次零點),函數(shù)值變號

  推論:函數(shù)在區(qū)間上的圖象是連續(xù)的,且,那么函數(shù)在區(qū)間上至少有一個零點

 。2)相鄰兩個零點之間的函數(shù)值保持同號

  學(xué)習(xí)評價

  ※自我評價你完成本節(jié)導(dǎo)學(xué)案的情況為()

  A.很好B.較好C.一般D.較差

  ※當(dāng)堂檢測(時量:5分鐘滿分:10分)計分:

  1.函數(shù)的零點個數(shù)為()

  A.1B.2C.3D.4

  2.若函數(shù)在上連續(xù),且有。則函數(shù)在上()

  A.一定沒有零點B.至少有一個零點

  C.只有一個零點D.零點情況不確定

  3.函數(shù)的零點所在區(qū)間為()

  A.B.C.D.

  4.函數(shù)的零點為

  5.若函數(shù)為定義域是R的奇函數(shù),且在上有一個零點。則的零點個數(shù)為

  課后作業(yè)

  1.求函數(shù)的零點所在的大致區(qū)間,并畫出它的大致圖象

  2.已知函數(shù)

 。1)為何值時,函數(shù)的圖象與軸有兩個零點;

 。2)若函數(shù)至少有一個零點在原點右側(cè),求值

  數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計 3

  教學(xué)目標(biāo)

  掌握二次函數(shù)y=ax2+bx+c的圖象與x軸的交點個數(shù)與一元二次方程ax2+bx+c=0的解的情況之間的關(guān)系。

  重點、難點:

  二次函數(shù)y=ax2+bx+c的圖象與一元二次方程ax2+bx+c=0的根之間關(guān)系的探索。

  教學(xué)過程:

  一、情境創(chuàng)設(shè)

  一次函數(shù)y=x+2的圖象與x軸的交點坐標(biāo)

  問題1.任意一次函數(shù)的圖象與x軸有幾個交點?

  問題2.猜想二次函數(shù)圖象與x軸可能會有幾個交點?可以借助什么來研究?

  二、探索活動

  活動一觀察

  在直角坐標(biāo)系中任意取三點A、B、C,測出它們的縱坐標(biāo),分別記作a、b、c,以a、b、c為系數(shù)繪制二次函數(shù)y=ax2+bx+c的圖象,觀察它與x軸交點數(shù)量的情況;任意改變a、b、c值后,觀察交點數(shù)量變化情況。

  活動二觀察與探索

  如圖1,觀察二次函數(shù)y=x2-x-6的圖象,回答問題:

  (1)圖象與x軸的交點的坐標(biāo)為A(,),B(,)

  (2)當(dāng)x=時,函數(shù)值y=0。

  (3)求方程x2-x-6=0的解。

  (4)方程x2-x-6=0的解和交點坐標(biāo)有何關(guān)系?

  活動三猜想和歸納

  (1)你能說出函數(shù)y=ax2+bx+c的圖象與x軸交點個數(shù)的其它情況嗎?猜想交點個數(shù)和方程ax2+bx+c=0的根的個數(shù)有何關(guān)系。

 。2)一元二次方程ax2+bx+c=0的根的.個數(shù)由什么來判斷?

  這樣我們可以把二次函數(shù)y=ax2+bx+c的圖象與x軸交點、一元二次方程ax2+bx+c=0的實數(shù)根和根的判別式三者聯(lián)系起來。

  三、例題分析

  例1.不畫圖象,判斷下列函數(shù)與x軸交點情況。

  (1)y=x2-10x+25

  (2)y=3x2-4x+2

  (3)y=-2x2+3x-1

  例2.已知二次函數(shù)y=mx2+x-1

  (1)當(dāng)m為何值時,圖象與x軸有兩個交點

  (2)當(dāng)m為何值時,圖象與x軸有一個交點?

  (3)當(dāng)m為何值時,圖象與x軸無交點?

  四、拓展練習(xí)

  1.如圖2,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B。

  (1)請寫出方程ax2+bx+c=0的根

  (2)列舉一個二次函數(shù),使其圖象與x軸交于(1,0)和(4,0),且適合這個圖象。

  2.列舉一個二次函數(shù),使其圖象開口向上,且與x軸交于(-2,0)和(1,0)

  五、小結(jié)

  這節(jié)課我們有哪些收獲?

  六、作業(yè)

  求證:二次函數(shù)y=x2+ax+a-2的圖象與x軸一定有兩個不同的交點。

  數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計 4

  教學(xué)目標(biāo)

 。ㄒ唬┲R認(rèn)知要求

  1、認(rèn)識一元一次方程與一次函數(shù)問題的轉(zhuǎn)化關(guān)系;

  2、學(xué)會用圖象法求解方程;

  3、進(jìn)一步理解數(shù)形結(jié)合思想;

 。ǘ┠芰τ(xùn)練要求

  1、通過一元一次方程與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識;

  2、訓(xùn)練大家能利用數(shù)學(xué)知識去解決實際問題的.能力。

 。ㄈ┣楦信c價值觀要求

  體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認(rèn)識到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用。

  教學(xué)重點與難點

  1、理解一元一次不方程與一次函數(shù)的轉(zhuǎn)化及本質(zhì)聯(lián)系。

  2、掌握用圖象求解方程的方法。

  教學(xué)過程

  一、提出問題

  (1)方程2x+20=0;(2)函數(shù)y=2x+20

  觀察思考:二者之間有什么聯(lián)系?

  從數(shù)上看:方程2x+20=0的解,是函數(shù)y=2x+20的值為0時,對應(yīng)自變量x的值

  從形上看:函數(shù)y=2x+20與x軸交點的橫坐標(biāo)即為方程2x+20=0的解

  根據(jù)上述問題,教師啟發(fā)學(xué)生思考:

  根據(jù)學(xué)生回答,教師總結(jié):

  由于任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某一個函數(shù)的值為0時,求相應(yīng)的自變量的值。從圖象上看,這相當(dāng)于已知直線y=ax+b,確定它也x軸交點的橫坐標(biāo)的值。

  二、典型例題:

  例1、(書中例1)一個物體現(xiàn)在的速度是5米/秒,其速度每秒增加2米/秒,再過幾秒它的速度為17米/秒?

  數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計 5

  一、教學(xué)目標(biāo):

  1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù) ;

  2.讓學(xué)生了解函數(shù)的零點與方程根的聯(lián)系 ;

  3.讓學(xué)生認(rèn)識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點中的作用 ;

  4.培養(yǎng)學(xué)生動手操作的`能力 。

  二、教學(xué)重點、難點

  重點:零點的概念及存在性的判定;

  難點:零點的確定。

  三、復(fù)習(xí)引入

  例1:判斷方程 x2-x-6=0 解的存在。

  分析:考察函數(shù)f(x)= x2-x-6, 其

  圖像為拋物線容易看出,f(0)=-60,f(4)0,f(-4)0

  由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,點B (0,-6)與點C(4,6)之間的那部分曲線

  必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點

  X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

  少有點X2,使得f( X2)=0,而方程至多有兩

  個解,所以在(-4,0),(0,4)內(nèi)各有一解

  定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù) x叫函數(shù)y=f(x)的零點

  抽象概括

  y=f(x)的圖像與x軸的交點的橫坐標(biāo)叫做該函數(shù)的零點,即f(x)=0的解。

  若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個零點,即f(x)=0在 (a,b)內(nèi)至少有一個實數(shù)解。

  f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點

  所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點

  注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個實數(shù)解指出了方程f(x)=0的實數(shù)解的存在性,并不能判斷具體有多少個解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實數(shù)解;

  3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

  4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。

  四、知識應(yīng)用

  例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實數(shù)解?為什么?

  解:f(x)=3x-x2的圖像是連續(xù)曲線, 因為

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點,即f(x)=0在區(qū)間[-1,0]內(nèi)有實數(shù)解

  練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒有零點?

  例3 判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。

  解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個交點,在( -,2)內(nèi)也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。

  練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內(nèi),求m的取值范圍。

  五、課后作業(yè)

  p133第2,3題

  數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計 6

  一、教材分析

  本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點,其交點的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的

  二、學(xué)情分析

  學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決

  三、目標(biāo)分析

  1.教學(xué)目標(biāo)

  知識與技能目標(biāo)

  (1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;

  (2) 掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;

  (3) 掌握二元一次方程組的圖像解法

  過程與方法目標(biāo)

  (1) 教材以問題串的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;

  (2) 通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力

  (3) 情感與態(tài)度目標(biāo)

  (1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神

  (2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力

  2.教學(xué)重點

  (1)二元一次方程和一次函數(shù)的關(guān)系;

  (2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系

  3.教學(xué)難點

  數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識

  四、教法學(xué)法

  1.教法學(xué)法

  啟發(fā)引導(dǎo)與自主探索相結(jié)合

  2.課前準(zhǔn)備

  教具:多媒體課件、三角板

  學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙

  五、教學(xué)過程

  本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置

  第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)

  內(nèi)容:1.方程x+y=5的解有多少個? 是這個方程的解嗎?

  2.點(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?

  3.在一次函數(shù)y= 的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?

  4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y= 的圖像相同嗎?

  由此得到本節(jié)課的第一個知識點:

  二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

  (1) 以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;

  (2) 一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程

  意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系.

  效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識

  前面研究了一個二元一次方程和相應(yīng)的一個一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應(yīng)的兩個一次函數(shù)的關(guān)系.順其自然進(jìn)入下一環(huán)節(jié)

  第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系

  內(nèi)容:1.解方程組

  2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像

  3.方程組的解和這兩個函數(shù)的圖像的交點坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;

  (1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);

  (2) 求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解

  (3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種

  注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組

  意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點坐標(biāo)打下基礎(chǔ)

  效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力

  第三環(huán)節(jié) 典型例題

  探究方程與函數(shù)的相互轉(zhuǎn)化

  內(nèi)容:例1 用作圖像的方法解方程組

  例2 如圖,直線 與 的交點坐標(biāo)是

  意圖:設(shè)計例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解。通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理。這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時解決實際問題作了很好的鋪墊

  效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化

  第四環(huán)節(jié) 反饋練習(xí)

  內(nèi)容:1.已知一次函數(shù) 與 的`圖像的交點為 ,則

  2.已知一次函數(shù) 與 的圖像都經(jīng)過點A(2,0),且與 軸分別交于B,C兩點,則 的面積為( )

  (A)4 (B)5 (C)6 (D)7

  3.求兩條直線 與 和 軸所圍成的三角形面積

  4.如圖,兩條直線 與 的交點坐標(biāo)可以看作哪個方程組的解?

  意圖:4個練習(xí),意在及時檢測學(xué)生對本節(jié)知識的掌握情況

  效果:加深了兩條直線交點的坐標(biāo)就是對應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性

  第五環(huán)節(jié) 課堂小結(jié)

  內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:

  1.二元一次方程和一次函數(shù)的圖像的關(guān)系;

  (1) 以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;

  (2) 一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程

  2.方程組和對應(yīng)的兩條直線的關(guān)系:

  (1) 方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);

  (2) 兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;

  3.解二元一次方程組的方法有3種:

  (1)代入消元法;

  (2)加減消元法;

  (3)圖像法. 要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解

  意圖:旨在使本節(jié)課的知識點系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用

  第六環(huán)節(jié) 作業(yè)布置

  習(xí)題7.7

  附: 板書設(shè)計

  六、教學(xué)反思

  本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解。因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個問題

  數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計 7

  一、教材分析

  1、教材的地位和作用

  函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學(xué)模型。用函數(shù)的觀點看方程(組)與不等式,使學(xué)生不僅能加深對方程(組)、不等式的理解,提高認(rèn)識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過程中體驗數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價值,這對今后的學(xué)習(xí)有著十分重要的意義。

  2、教學(xué)重難點

  重點:一次函數(shù)與二元一次方程(組)關(guān)系的探索。

  難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。

  3、教學(xué)目標(biāo)

  知識技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會用圖象法解二元一次方程組。

  數(shù)學(xué)思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實際問題的解決過程,學(xué)會用函數(shù)的觀點去認(rèn)識問題。

  解決問題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實際問題。

  情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。

  二、教法說明

  對于認(rèn)知主體——學(xué)生來說,他們已經(jīng)具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快地學(xué)習(xí)。

  三、教學(xué)過程

  (一)感知身邊數(shù)學(xué)

  多媒體播放一段發(fā)生在電信公司里的情景:一顧客準(zhǔn)備辦理上網(wǎng)業(yè)務(wù),發(fā)現(xiàn)有兩種收費方式:方式A以每分鐘0.1元的價格按上網(wǎng)時間計費;方式B除收月基費20元外再以每分鐘0.05元的價格按上網(wǎng)時間計費。顧客說他每月上網(wǎng)的費用按這兩種收費方式計算都是一樣多。求這位顧客打算每月上網(wǎng)多長時間?多少費用?

  學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。

  [設(shè)計意圖]建構(gòu)主義認(rèn)為,在實際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用“上網(wǎng)收費”這一生活實際創(chuàng)設(shè)情境,并用問題啟發(fā)學(xué)生去思、鼓勵學(xué)生去探、激勵學(xué)生去說,努力給學(xué)生造成“心求通而未能得,口欲言而不能說”的情勢,從而喚起學(xué)生強(qiáng)烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。

  (二)享受探究樂趣

  1、探究一次函數(shù)與二元一次方程的關(guān)系

  填空:二元一次方程 可以轉(zhuǎn)化為 ________。

  思考:(1)直線 上任意一點 一定是方程 的解嗎?

 。2)是否任意的二元一次方程都可以轉(zhuǎn)化為這種一次函數(shù)的形式?

 。3)是否直線上任意一點的坐標(biāo)都是它所對應(yīng)的二元一次方程的解?

  [設(shè)計意圖]用一連串的問題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關(guān)系,為探索二元一次方程組的解與直線交點坐標(biāo)的關(guān)系作好鋪墊。

  2、探究一次函數(shù)與二元一次方程組的關(guān)系

 。1)在同一坐標(biāo)系中畫出一次函數(shù) 和 的圖象,觀察兩直線的'交點坐標(biāo)是否是方程組 的解?并探索:是否任意兩個一次函數(shù)的交點坐標(biāo)都是它們所對應(yīng)的二元一次方程組的解?

  此時教師留給學(xué)生充分探索交流的時間與空間,對學(xué)生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點的坐標(biāo)。

 。2)當(dāng)自變量 取何值時,函數(shù) 與 的值相等?這個函數(shù)值是什么?這一問題與解方程組 是同一問題嗎?

  進(jìn)一步歸納出:從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。

  [設(shè)計意圖] 學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認(rèn)識一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現(xiàn)知識的形成過程,避免單純地記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。此時教師及時對學(xué)生進(jìn)行鼓勵,充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗。

 。ㄈ┏俗腔劭燔

  例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費方式:方式A以每分0.1元的價格按上網(wǎng)時間計費;方式B除收月基費20元外再以每分0 .05元的價格按上網(wǎng)時間計費。如何選擇收費方式能使上網(wǎng)者更合算?

  解法1:設(shè)上網(wǎng)時間為 分,若按方式A則收 元;若按方式B則收 元。然后在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標(biāo) ,結(jié)合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當(dāng)一個月內(nèi)上網(wǎng)時間少于400分時,選擇方式A省錢;當(dāng)上網(wǎng)時間等于400分時,選擇方式A、B沒有區(qū)別;當(dāng)上網(wǎng)時間多于400分時,選擇方式B省錢。

  解法2:設(shè)上網(wǎng)時間為 分,方式B與方式A兩種計費的差額為 元,得到一次函數(shù): ,即 ,然后畫出函數(shù)的圖象,計算出直線與 軸的交點坐標(biāo),類似地用點位置的高低直觀地找到答案。

  注意:所畫的函數(shù)圖象都是射線。

  [設(shè)計意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費方式好嗎?”再次激起學(xué)生強(qiáng)烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過此問題的探究,使學(xué)生有效地理解本節(jié)課的難點,體會數(shù)形結(jié)合這一思想方法的應(yīng)用。

 。ㄋ模w驗成功喜悅

  1、搶答題

 。1)、以方程 的解為坐標(biāo)的所有點都在一次函數(shù) _____的圖象上。

 。2)、方程組 的解是________,由此可知,一次函數(shù) 與 的圖象必有一個交點,且交點坐標(biāo)是________。

  2、旅游問題

  古城荊州歷史悠久,文化燦爛。今年,大型歷史劇《萬歷首輔張居正》在荊州封鏡后,來荊州的游客更是絡(luò)繹不絕。據(jù)悉,張居正紀(jì)念館門票標(biāo)價20元/張,近期正在進(jìn)行優(yōu)惠活動,購買時有兩種方式:方式A是團(tuán)隊中每位游客按8折購買;方式B是團(tuán)隊中除5張按標(biāo)價購買外,其余按7折購買。如果你是團(tuán)隊的負(fù)責(zé)人,你會如何選擇購買方式使整個團(tuán)隊更合算?

  [設(shè)計意圖]抓住學(xué)生對競爭充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動,并在搶答中品味成功的快樂,提高思維的速度。在學(xué)生感興趣的旅游問題中,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,更好地促進(jìn)學(xué)生對本節(jié)課難點的理解和應(yīng)用,幫助學(xué)生不斷完善新的認(rèn)知結(jié)構(gòu)。

 。ㄎ澹┓窒砟阄沂斋@

  在課堂臨近尾聲時,向?qū)W生提出:通過今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?

  [設(shè)計意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評價。

  數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計 8

  一、教學(xué)目標(biāo):

  知識與技能:

   使學(xué)生理解函數(shù)的基本概念,包括定義、表示方法(解析式、圖像等)及簡單的函數(shù)性質(zhì)。

   掌握一元一次方程、一元二次方程的解法,并能運用方程思想解決實際問題。

   培養(yǎng)學(xué)生通過函數(shù)圖像理解和解決問題的能力。

  過程與方法:

   通過實例引入,引導(dǎo)學(xué)生觀察、分析、歸納出函數(shù)和方程的概念,體驗從具體到抽象的數(shù)學(xué)思維過程。

   通過小組合作、探究學(xué)習(xí),掌握函數(shù)圖像的繪制和對方程求解的方法。

  情感態(tài)度與價值觀:

   提高學(xué)生對數(shù)學(xué)的興趣和自信心,體驗數(shù)學(xué)在生活中的應(yīng)用價值,培養(yǎng)嚴(yán)謹(jǐn)細(xì)致的學(xué)習(xí)態(tài)度和團(tuán)隊協(xié)作精神。

  二、教學(xué)內(nèi)容與過程:

  引入部分:

   以生活中的實例引入函數(shù)概念,如距離隨時間變化的速度函數(shù),展示不同類型的函數(shù)圖像,引導(dǎo)學(xué)生初步感知函數(shù)的變化規(guī)律。

  新課講解:

   定義講解:詳細(xì)闡述函數(shù)的定義,區(qū)分自變量和因變量,明確函數(shù)關(guān)系的'確定性。

   函數(shù)表示:教授如何根據(jù)實際問題列出函數(shù)解析式,以及如何通過解析式畫出函數(shù)圖像。

   方程教學(xué):介紹一元一次方程和一元二次方程的解法,結(jié)合實例演示求解過程,強(qiáng)調(diào)方程與函數(shù)之間的聯(lián)系。

  實踐操作:

   設(shè)計課堂活動,讓學(xué)生分組完成函數(shù)圖像繪制,對比分析不同函數(shù)的特性。

   給定實際問題情境,要求學(xué)生運用所學(xué)知識建立方程并求解,加深對函數(shù)和方程的理解。

  鞏固提升:

   設(shè)計多層次的習(xí)題,包括基礎(chǔ)練習(xí)、拓展提高和綜合運用,幫助學(xué)生鞏固新知識,提升解題能力。

  小結(jié)與作業(yè):

   對本節(jié)課的主要知識點進(jìn)行總結(jié)回顧,強(qiáng)化學(xué)生對函數(shù)和方程概念的認(rèn)識。

   布置適量的課后作業(yè),涵蓋本節(jié)課的重點難點,同時鼓勵學(xué)生在生活中尋找和函數(shù)方程相關(guān)的實際問題,進(jìn)一步深化理論與實踐的結(jié)合。

【數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計】相關(guān)文章:

變量與函數(shù)的教學(xué)設(shè)計02-23

高中數(shù)學(xué)圓方程教學(xué)設(shè)計07-10

方程的意義教學(xué)設(shè)計03-20

方程意義教學(xué)設(shè)計04-18

冪函數(shù)教學(xué)設(shè)計優(yōu)秀10-29

小學(xué)數(shù)學(xué)《解簡易方程》教學(xué)設(shè)計(精選13篇)11-14

方程的意義教學(xué)設(shè)計集合04-18

方程意義教學(xué)設(shè)計通用04-18

方程的意義教學(xué)設(shè)計集錦04-05

方程的意義教學(xué)設(shè)計推薦05-05