中學(xué)二次根式除法教學(xué)設(shè)計(jì)
正數(shù)a的正的平方根和零的平方根統(tǒng)稱為算術(shù)平方根,用√ā(a≥0)來表示。中學(xué)二次根式除法教學(xué)設(shè)計(jì),我們來了解一下。
教學(xué)建議
知識結(jié)構(gòu):
重點(diǎn)難點(diǎn)分析:
是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算,利用分母有理化化簡。商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握。
教學(xué)難點(diǎn)是與商的算術(shù)平方根的關(guān)系及應(yīng)用。與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號。由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計(jì)算結(jié)果形式。
教法建議:
1。 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對比、歸納得到商的.二次根式的性質(zhì)。教師在此過程當(dāng)中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向。
2。 本節(jié)內(nèi)容可以分為三課時,第一課時討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時討論法則,并運(yùn)用這一法則進(jìn)行簡單的運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時運(yùn)算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化。這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開。
3。 引導(dǎo)學(xué)生思考“想一想”中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程當(dāng)中,鼓勵學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維。
教學(xué)設(shè)計(jì)示例
一、教學(xué)目標(biāo)
1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算;
2.會進(jìn)行簡單的運(yùn)算;
3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計(jì)算問題;
4。 培養(yǎng)學(xué)生利用公式進(jìn)行化簡與計(jì)算的能力;
5。 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;
6。 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性。
二、教學(xué)重點(diǎn)和難點(diǎn)
1.重點(diǎn):會利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡,會進(jìn)行簡單的運(yùn)算,還要使學(xué)生掌握采用分母有理化的方法進(jìn)行.
2.難點(diǎn):與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.
四、教學(xué)手段
利用投影儀.
五、教學(xué)過程
(一) 引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a≥0,b≥0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)
學(xué)生觀察下面的例子,并計(jì)算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
(二)新課
商的算術(shù)平方根.
一般地,有 (a≥0,b>0)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.
讓學(xué)生討論這個式子成立的條件是什么?a≥0,b>0,對于為什么b>0,要使學(xué)生通過討論明確,因?yàn)閎=0時分母為0,沒有意義.
引導(dǎo)學(xué)生從運(yùn)算順序看,等號左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡單的二次根式的化簡與運(yùn)算.
例1 化簡:
。1) ; (2) ; (3) ;
解∶(1)
。2)
。3)
說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時,一般先化成假分?jǐn)?shù);本節(jié)根號下的字母均為正數(shù)。
例2 化簡:
。1) ; (2) ;
解:(1)
。2)
讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問題怎樣解決?
再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決。
學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).
(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)
2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.
(四)練習(xí)
1.化簡:
。1) ; (2) ; (3) 。
2.化簡:
。1) ; (2) ; (3)
六、作業(yè)
教材P.183習(xí)題11.3;A組1.
七、板書設(shè)計(jì)
【中學(xué)二次根式除法教學(xué)設(shè)計(jì)】相關(guān)文章:
《有余數(shù)的除法》教學(xué)設(shè)計(jì)范文05-01
《有余數(shù)的除法》教學(xué)設(shè)計(jì)范文(通用5篇)05-07
拼音教學(xué)設(shè)計(jì)04-05
氓教學(xué)設(shè)計(jì)04-04
牧童教學(xué)設(shè)計(jì)04-02
必備教學(xué)設(shè)計(jì)02-25
小班教學(xué)設(shè)計(jì)02-22
夏教學(xué)設(shè)計(jì)01-01