精品国产一级毛片大全,毛片一级在线,毛片免费观看的视频在线,午夜毛片福利

我要投稿 投訴建議

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-06-10 11:43:26 中考 我要投稿

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)實(shí)用15篇

  總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書(shū)面材料,他能夠提升我們的書(shū)面表達(dá)能力,讓我們抽出時(shí)間寫(xiě)寫(xiě)總結(jié)吧。你想知道總結(jié)怎么寫(xiě)嗎?以下是小編精心整理的中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)實(shí)用15篇

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  中考數(shù)學(xué)知識(shí)點(diǎn):分式混合運(yùn)算法則

  分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).

  分式混合運(yùn)算法則:

  分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);

  乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;

  加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;

  變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).

  中考數(shù)學(xué)二次根式的加減法知識(shí)點(diǎn)總結(jié)

  二次根式的加減法

  知識(shí)點(diǎn)1:同類(lèi)二次根式

  (Ⅰ)幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開(kāi)方數(shù)相同,這幾個(gè)二次根式叫做同類(lèi)二次根式,如這樣的二次根式都是同類(lèi)二次根式。

  (Ⅱ)判斷同類(lèi)二次根式的方法:(1)首先將不是最簡(jiǎn)形式的二次根式化為最簡(jiǎn)二次根式以后,再看被開(kāi)方數(shù)是否相同。(2)幾個(gè)二次根式是否是同類(lèi)二次根式,只與被開(kāi)方數(shù)及根指數(shù)有關(guān),而與根號(hào)外的因式無(wú)關(guān)。

  知識(shí)點(diǎn)2:合并同類(lèi)二次根式的方法

  合并同類(lèi)二次根式的理論依據(jù)是逆用乘法對(duì)加法的分配律,合并同類(lèi)二次根式,只把它們的系數(shù)相加,根指數(shù)和被開(kāi)方數(shù)都不變,不是同類(lèi)二次根式的不能合并。

  知識(shí)點(diǎn)3:二次根式的加減法則

  二次根式相加減先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把同類(lèi)二次根式合并,合并的方法為系數(shù)相加,根式不變。

  知識(shí)點(diǎn)4:二次根式的混合運(yùn)算方法和順序

  運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類(lèi)似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號(hào)的先算括號(hào)內(nèi)的。

  知識(shí)點(diǎn)5:二次根式的加減法則與乘除法則的區(qū)別

  乘除法中,系數(shù)相乘,被開(kāi)方數(shù)相乘,與兩根式是否是同類(lèi)根式無(wú)關(guān),加減法中,系數(shù)相加,被開(kāi)方數(shù)不變而且兩根式須是同類(lèi)最簡(jiǎn)根式。

  中考數(shù)學(xué)知識(shí)點(diǎn):直角三角形

  ★重點(diǎn)★解直角三角形

  ☆內(nèi)容提要☆

  一、三角函數(shù)

  1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.

  2.特殊角的'三角函數(shù)值:

  0°30°45°60°90°

  sinα

  cosα

  tgα/

  ctgα/

  3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…

  4.三角函數(shù)值隨角度變化的關(guān)系

  5.查三角函數(shù)表

  二、解直角三角形

  1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。

  2.依據(jù):①邊的關(guān)系:

 、诮堑年P(guān)系:A+B=90°

  ③邊角關(guān)系:三角函數(shù)的定義。

  注意:盡量避免使用中間數(shù)據(jù)和除法。

  三、對(duì)實(shí)際問(wèn)題的處理

  1.俯、仰角:2.方位角、象限角:3.坡度:

  4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  1、方程:含有未知數(shù)的等式叫做方程。

  2、方程的解:使方程左右兩邊的值相等的未知數(shù)的值叫方程的解,含有一個(gè)未知數(shù)的方程的解也叫做方程的根。

  3、解方程:求方程的解或方判斷方程無(wú)解的過(guò)程叫做解方程。

  4、方程的增根:在方程變形時(shí),產(chǎn)生的不適合原方程的根叫做原方程的增根。

  二、一元方程

  1、一元一次方程

 。1)一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(其中x是未知數(shù),a、b是已知數(shù),a≠0)

  (2)一玩一次方程的最簡(jiǎn)形式:ax=b(其中x是未知數(shù),a、b是已知數(shù),a≠0)

 。3)解一元一次方程的一般步驟:去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)和系數(shù)化為1。

  (4)一元一次方程有唯一的一個(gè)解。

  2、一元二次方程

 。1)一元二次方程的一般形式:(其中x是未知數(shù),a、b、c是已知數(shù),a≠0)

 。2)一元二次方程的解法:直接開(kāi)平方法、配方法、公式法、因式分解法

 。3)一元二次方程解法的'選擇順序是:先特殊后一般,如果沒(méi)有要求,一般不用配方法。

 。4)一元二次方程的根的判別式:

  當(dāng)Δ>0時(shí)方程有兩個(gè)不相等的實(shí)數(shù)根;

  當(dāng)Δ=0時(shí)方程有兩個(gè)相等的實(shí)數(shù)根;

  當(dāng)Δ< 0時(shí)方程沒(méi)有實(shí)數(shù)根,無(wú)解;

  當(dāng)Δ≥0時(shí)方程有兩個(gè)實(shí)數(shù)根

  (5)一元二次方程根與系數(shù)的關(guān)系:

  若是一元二次方程的兩個(gè)根,那么:,(6)以?xún)蓚(gè)數(shù)為根的一元二次方程(二次項(xiàng)系數(shù)為1)是:

  三、分式方程

  (1)定義:分母中含有未知數(shù)的方程叫做分式方程。

  (2)分式方程的解法:

  一般解法:去分母法,方程兩邊都乘以最簡(jiǎn)公分母。

  特殊方法:換元法。

  (3)檢驗(yàn)方法:一般把求得的未知數(shù)的值代入最簡(jiǎn)公分母,使最簡(jiǎn)公分母不為0的就是原方程的根;使得最簡(jiǎn)公分母為0的就是原方程的增根,增根必須舍去,也可以把求得的未知數(shù)的值代入原方程檢驗(yàn)。

  四、方程組

  1、方程組的解:方程組中各方程的公共解叫做方程組的解。

  2、解方程組:求方程組的解或判斷方程組無(wú)解的過(guò)程叫做解方程組

  3、一次方程組:

 。1)二元一次方程組:

  一般形式:(不全為0)

  解法:代入消遠(yuǎn)法和加減消元法

  解的個(gè)數(shù):有唯一的解,或無(wú)解,當(dāng)兩個(gè)方程相同時(shí)有無(wú)數(shù)的解。

 。2)三元一次方程組:

  解法:代入消元法和加減消元法

  4、二元二次方程組:

 。1)定義:由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組以及由兩個(gè)二元二次方程組成的方程組叫做二元二次方程組。

 。2)解法:消元,轉(zhuǎn)化為解一元二次方程,或者降次,轉(zhuǎn)化為二元一次方程組。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  不等式與不等式組

  1.定義:

  用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。

  2.性質(zhì):

 、俨坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號(hào)方向不變。

 、诓坏仁降'兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。

 、鄄坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。

  3.分類(lèi):

 、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

 、谝辉淮尾坏仁浇M:

  a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

  b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

  4.考點(diǎn):

 、俳庖辉淮尾坏仁(組)

  ②根據(jù)具體問(wèn)題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問(wèn)題

 、塾脭(shù)軸表示一元一次不等式(組)的解集

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  一、初中數(shù)學(xué)基本知識(shí)

 、、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)

  ②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

  數(shù)軸:①畫(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線(xiàn)上向右的方向?yàn)檎较颍偷玫綌?shù)軸。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

  有理數(shù)的運(yùn)算:

  加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變。

  減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。

  除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。

  乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

  2、實(shí)數(shù)

  無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)

  平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。

  立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。

  實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

  3、代數(shù)式

  代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

  合并同類(lèi)項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類(lèi)項(xiàng)。②把同類(lèi)項(xiàng)合并成一項(xiàng)就叫做合并同類(lèi)項(xiàng)。③在合并同類(lèi)項(xiàng)時(shí),我們把同類(lèi)項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

  整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類(lèi)項(xiàng)。

  冪的運(yùn)算:AMAN=A(MN)

  (AM)N=AMN

  (A/B)N=AN/BN除法一樣。

  整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

 、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

  分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

  方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。

  ②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

  分式的運(yùn)算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

  加減法:

 、偻帜傅姆质较嗉訙p,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ郑癁橥帜傅姆质,再加減。

  分式方程:

 、俜帜钢泻形粗獢(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。

  20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

  ①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項(xiàng),合并同類(lèi)項(xiàng),未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的'次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線(xiàn))了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)?shù)?的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_(kāi)平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c

  4)韋達(dá)定理

  利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diata”,而△=b2-4ac,這里可以分為3種情況:

  I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

  II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

  III當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)

  2、不等式與不等式組

  不等式:

  ①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。

 、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號(hào)的方向不變。

 、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號(hào)方向不變。

 、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

 、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

  一元一次不等式組:

 、訇P(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

  ②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

 、矍蟛坏仁浇M解集的過(guò)程,叫做解不等式組。

  一元一次不等式的符號(hào)方向:

  在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。

  在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:A>B,AC>BC

  在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A-C>B-C

  在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A*C>B*C(C>0)

  在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A*C

  如果不等式乘以0,那么不等號(hào)改為等號(hào)

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;

  二、函數(shù)

  變量:因變量,自變量。

  在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

  一次函數(shù):①若兩個(gè)變量X,間的關(guān)系式可以表示成=XB(B為常數(shù),不等于0)的形式,則稱(chēng)是X的一次函數(shù)。②當(dāng)B=0時(shí),稱(chēng)是X的正比例函數(shù)。

  一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)=X的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。③在一次函數(shù)中,當(dāng)〈0,B〈O,則經(jīng)234象限;當(dāng)〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)〉0,B〉0時(shí),則經(jīng)123象限。④當(dāng)〉0時(shí),的值隨X值的增大而增大,當(dāng)X〈0時(shí),的值隨X值的增大而減少。

  三、空間與圖形

  A、圖形的認(rèn)識(shí)

  1、點(diǎn),線(xiàn),面

  點(diǎn),線(xiàn),面:①圖形是由點(diǎn),線(xiàn),面構(gòu)成的。②面與面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。③點(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。

  展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線(xiàn),棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。

  20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)建造師考試_建筑工程類(lèi)工程師考試網(wǎng)

  弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。

  2、角

  線(xiàn):①線(xiàn)段有兩個(gè)端點(diǎn)。②將線(xiàn)段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。③將線(xiàn)段的兩端無(wú)限延長(zhǎng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。

  比較長(zhǎng)短:①兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。②兩點(diǎn)之間線(xiàn)段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

  角的度量與表示:①角由兩條具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線(xiàn)繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線(xiàn)繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。

  平行:①同一平面內(nèi),不相交的兩條直線(xiàn)叫做平行線(xiàn)。②經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。③如果兩條直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。

  垂直:①如果兩條直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。②互相垂直的兩條直線(xiàn)的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。

  垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。

  垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據(jù)射線(xiàn)和直線(xiàn)可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線(xiàn)段穿出2點(diǎn)。

  垂直平分線(xiàn)定理:

  性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;

  判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上

  角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。

  定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì)出現(xiàn)直線(xiàn),這是角平分線(xiàn)的對(duì)稱(chēng)軸才會(huì)用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)

  性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  1、解直角三角形

  銳角三角函數(shù)

  銳角a的正弦、余弦和正切統(tǒng)稱(chēng)∠a的三角函數(shù)。

  如果∠a是Rt△ABC的一個(gè)銳角,則有

  銳角三角函數(shù)的計(jì)算

  解直角三角形

  在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過(guò)程,叫做解直角三角形。

  2、直線(xiàn)與圓的位置關(guān)系

  直線(xiàn)與圓的位置關(guān)系

  當(dāng)直線(xiàn)與圓有兩個(gè)公共點(diǎn)時(shí),叫做直線(xiàn)與圓相交;當(dāng)直線(xiàn)與圓有公共點(diǎn)時(shí),叫做直線(xiàn)與圓相切,公共點(diǎn)叫做切點(diǎn);當(dāng)直線(xiàn)與圓沒(méi)有公共點(diǎn)時(shí),叫做直線(xiàn)與圓相離。

  直線(xiàn)與圓的位置關(guān)系有以下定理:

  直線(xiàn)與圓相切的判定定理:

  經(jīng)過(guò)半徑的外端并且垂直這條半徑的直線(xiàn)是圓的切線(xiàn)。

  圓的切線(xiàn)性質(zhì):

  經(jīng)過(guò)切點(diǎn)的半徑垂直于圓的切線(xiàn)。

  切線(xiàn)長(zhǎng)定理

  從圓外一點(diǎn)作圓的切線(xiàn),通常我們把圓外這一點(diǎn)到切點(diǎn)間的線(xiàn)段的長(zhǎng)叫做切線(xiàn)長(zhǎng)。

  切線(xiàn)長(zhǎng)定理:過(guò)圓外一點(diǎn)所作的圓的兩條切線(xiàn)長(zhǎng)相等。

  三角形的內(nèi)切圓

  與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形。三角形的內(nèi)心是三角形的三條角平分線(xiàn)的交點(diǎn)。

  3、三視圖與表面展開(kāi)圖

  投影

  物體在光線(xiàn)的照射下,在某個(gè)平面內(nèi)形成的影子叫做投影。光線(xiàn)叫做投影線(xiàn),投影所在的平面叫做投影面。由平行的投射線(xiàn)所形成的投射叫做平行投影。

  可以把太陽(yáng)光線(xiàn)、探照燈的光線(xiàn)看成平行光線(xiàn),它們所形成的投影就是平行投影。

  簡(jiǎn)單幾何體的三視圖

  物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側(cè)投影面上的正投影叫做左視圖。

  主視圖、左視圖和俯視圖合稱(chēng)三視圖。

  產(chǎn)生主視圖的投影線(xiàn)方向也叫做主視方向。

  由三視圖描述幾何體

  三視圖不僅反映了物體的形狀,而且反映了各個(gè)方向的尺寸大小。

  簡(jiǎn)單幾何體的表面展開(kāi)圖

  將幾何體沿著某些棱“剪開(kāi)”,并使各個(gè)面連在一起,鋪平所得到的平面圖形稱(chēng)為幾何體的表面展開(kāi)圖。

  圓柱可以看做由一個(gè)矩形ABCD繞它的一條邊BC旋轉(zhuǎn)一周,其余各邊所成的面圍成的.幾何體。AB、CD旋轉(zhuǎn)所成的面就是圓柱的兩個(gè)底面,是兩個(gè)半徑相同的圓。AD旋轉(zhuǎn)所成的面就是圓柱的側(cè)面,AD不論轉(zhuǎn)動(dòng)到哪個(gè)位置,都是圓柱的母線(xiàn)。

  圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉(zhuǎn)一周,它的其余各邊所成的面圍成的一個(gè)幾何體。直角邊BC旋轉(zhuǎn)所成的面就是圓錐的底面,斜邊AB旋轉(zhuǎn)所成的面就是圓錐的側(cè)面,斜邊AB不論轉(zhuǎn)動(dòng)到哪個(gè)位置,都叫做圓錐的母線(xiàn)。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  考點(diǎn)1

  相似三角形的概念、相似比的意義、畫(huà)圖形的放大和縮小。

  考核要求:

 。1)理解相似形的概念;

 。2)掌握相似圖形的特點(diǎn)以及相似比的意義,能將已知圖形按照要求放大和縮小。

  考點(diǎn)2

  平行線(xiàn)分線(xiàn)段成比例定理、三角形一邊的平行線(xiàn)的有關(guān)定理

  考核要求:理解并利用平行線(xiàn)分線(xiàn)段成比例定理解決一些幾何證明和幾何計(jì)算。

  注意:被判定平行的一邊不可以作為條件中的對(duì)應(yīng)線(xiàn)段成比例使用。

  考點(diǎn)3

  相似三角形的概念

  考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義。

  考點(diǎn)4

  相似三角形的判定和性質(zhì)及其應(yīng)用

  考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個(gè)判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用。

  考點(diǎn)5

  三角形的重心

  考核要求:知道重心的定義并初步應(yīng)用。

  考點(diǎn)6

  向量的有關(guān)概念

  考點(diǎn)7

  向量的加法、減法、實(shí)數(shù)與向量相乘、向量的線(xiàn)性運(yùn)算

  考核要求:掌握實(shí)數(shù)與向量相乘、向量的線(xiàn)性運(yùn)算

  考點(diǎn)8

  銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

  考點(diǎn)9

  解直角三角形及其應(yīng)用

  考核要求:

  (1)理解解直角三角形的意義;

  (2)會(huì)用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡(jiǎn)單的實(shí)際問(wèn)題,尤其應(yīng)當(dāng)熟練運(yùn)用特殊銳角的三角比的值解直角三角形。

  考點(diǎn)10

  函數(shù)以及函數(shù)的定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)

  考核要求:

 。1)通過(guò)實(shí)例認(rèn)識(shí)變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;

  (2)知道常值函數(shù);

 。3)知道函數(shù)的表示方法,知道符號(hào)的意義。

  考點(diǎn)11

  用待定系數(shù)法求二次函數(shù)的解析式

  考核要求:

 。1)掌握求函數(shù)解析式的方法;

 。2)在求函數(shù)解析式中熟練運(yùn)用待定系數(shù)法。

  注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原。

  考點(diǎn)12

  畫(huà)二次函數(shù)的圖像

  考核要求:

  (1)知道函數(shù)圖像的意義,會(huì)在平面直角坐標(biāo)系中用描點(diǎn)法畫(huà)函數(shù)圖像

  (2)理解二次函數(shù)的圖像,體會(huì)數(shù)形結(jié)合思想;

 。3)會(huì)畫(huà)二次函數(shù)的大致圖像。

  考點(diǎn)13

  二次函數(shù)的圖像及其基本性質(zhì)

  考核要求:

 。1)借助圖像的直觀、認(rèn)識(shí)和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線(xiàn)之間的聯(lián)系;

 。2)會(huì)用配方法求二次函數(shù)的頂點(diǎn)坐標(biāo),并說(shuō)出二次函數(shù)的有關(guān)性質(zhì)。

  注意:

 。1)解題時(shí)要數(shù)形結(jié)合;

 。2)二次函數(shù)的平移要化成頂點(diǎn)式。

  考點(diǎn)14

  圓心角、弦、弦心距的概念

  考核要求:清楚地認(rèn)識(shí)圓心角、弦、弦心距的概念,并會(huì)用這些概念作出正確的判斷。

  考點(diǎn)15

  圓心角、弧、弦、弦心距之間的關(guān)系

  考核要求:認(rèn)清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎(chǔ)上,運(yùn)用定理進(jìn)行初步的幾何計(jì)算和幾何證明。

  考點(diǎn)16

  垂徑定理及其推論

  垂徑定理及其推論是圓這一板塊中最重要的知識(shí)點(diǎn)之一。

  考點(diǎn)17

  直線(xiàn)與圓、圓與圓的位置關(guān)系及其相應(yīng)的數(shù)量關(guān)系

  直線(xiàn)與圓的位置關(guān)系可從與之間的關(guān)系和交點(diǎn)的個(gè)數(shù)這兩個(gè)側(cè)面來(lái)反映。在圓與圓的位置關(guān)系中,常需要分類(lèi)討論求解。

  考點(diǎn)18

  正多邊形的有關(guān)概念和基本性質(zhì)

  考核要求:熟悉正多邊形的有關(guān)概念(如半徑、邊心距、中心角、外角和),并能熟練地運(yùn)用正多邊形的基本性質(zhì)進(jìn)行推理和計(jì)算,在正多邊形的計(jì)算中,常常利用正多邊形的半徑、邊心距和邊長(zhǎng)的一半構(gòu)成的直角三角形,將正多邊形的計(jì)算問(wèn)題轉(zhuǎn)化為直角三角形的計(jì)算問(wèn)題。

  考點(diǎn)19

  畫(huà)正三、四、六邊形。

  考核要求:能用基本作圖工具,正確作出正三、四、六邊形。

  考點(diǎn)20

  確定事件和隨機(jī)事件

  考核要求:

 。1)理解必然事件、不可能事件、隨機(jī)事件的概念,知道確定事件與必然事件、不可能事件的關(guān)系;

 。2)能區(qū)分簡(jiǎn)單生活事件中的必然事件、不可能事件、隨機(jī)事件。

  考點(diǎn)21

  事件發(fā)生的可能性大小,事件的概率

  考核要求:

  (1)知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機(jī)事件發(fā)生的可能事件的大小并排出大小順序;

  (2)知道概率的含義和表示符號(hào),了解必然事件、不可能事件的概率和隨機(jī)事件概率的取值范圍;

  (3)理解隨機(jī)事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會(huì)根據(jù)大數(shù)次試驗(yàn)所得頻率估計(jì)事件的概率。

  注意:

 。1)在給可能性的大小排序前可先用“一定發(fā)生”、“很有可能發(fā)生”、“可能發(fā)生”、“不太可能發(fā)生”、“一定不會(huì)發(fā)生”等詞語(yǔ)來(lái)表述事件發(fā)生的可能性的大;

  (2)事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗(yàn)的次數(shù)的多少有關(guān),只有當(dāng)試驗(yàn)次數(shù)足夠大時(shí)才能更精確。

  考點(diǎn)22

  等可能試驗(yàn)中事件的概率問(wèn)題及概率計(jì)算

  考核要求:

 。1)理解等可能試驗(yàn)的`概念,會(huì)用等可能試驗(yàn)中事件概率計(jì)算公式來(lái)計(jì)算簡(jiǎn)單事件的概率;

 。2)會(huì)用枚舉法或畫(huà)“樹(shù)形圖”方法求等可能事件的概率,會(huì)用區(qū)域面積之比解決簡(jiǎn)單的概率問(wèn)題;

 。3)形成對(duì)概率的初步認(rèn)識(shí),了解機(jī)會(huì)與風(fēng)險(xiǎn)、規(guī)則公平性與決策合理性等簡(jiǎn)單概率問(wèn)題。

  注意:

 。1)計(jì)算前要先確定是否為可能事件;

 。2)用枚舉法或畫(huà)“樹(shù)形圖”方法求等可能事件的概率過(guò)程中要將所有等可能情況考慮完整。

  考點(diǎn)23

  數(shù)據(jù)整理與統(tǒng)計(jì)圖表

  考核要求:

 。1)知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;

 。2)結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,掌握用折線(xiàn)圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過(guò)圖表獲取有關(guān)信息。

  考點(diǎn)24

  統(tǒng)計(jì)的含義

  考核要求:

 。1)知道統(tǒng)計(jì)的意義和一般研究過(guò)程;

 。2)認(rèn)識(shí)個(gè)體、總體和樣本的區(qū)別,了解樣本估計(jì)總體的思想方法。

  考點(diǎn)25

  平均數(shù)、加權(quán)平均數(shù)的概念和計(jì)算

  考核要求:

  (1)理解平均數(shù)、加權(quán)平均數(shù)的概念;

  (2)掌握平均數(shù)、加權(quán)平均數(shù)的計(jì)算公式。注意:在計(jì)算平均數(shù)、加權(quán)平均數(shù)時(shí)要防止數(shù)據(jù)漏抄、重抄、錯(cuò)抄等錯(cuò)誤現(xiàn)象,提高運(yùn)算準(zhǔn)確率。

  考點(diǎn)26

  中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念和計(jì)算

  考核要求:

  (1)知道中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念;

 。2)會(huì)求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差,并能用于解決簡(jiǎn)單的統(tǒng)計(jì)問(wèn)題。

  注意:

 。1)當(dāng)一組數(shù)據(jù)中出現(xiàn)極值時(shí),中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;

  (2)求中位數(shù)之前必須先將數(shù)據(jù)排序。

  考點(diǎn)27

  頻數(shù)、頻率的意義,畫(huà)頻數(shù)分布直方圖和頻率分布直方圖

  考核要求:

 。1)理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關(guān)系式;

 。2)會(huì)畫(huà)頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實(shí)際問(wèn)題。解題時(shí)要注意:頻數(shù)、頻率能反映每個(gè)對(duì)象出現(xiàn)的頻繁程度,但也存在差別:在同一個(gè)問(wèn)題中,頻數(shù)反映的是對(duì)象出現(xiàn)頻繁程度的絕對(duì)數(shù)據(jù),所有頻數(shù)之和是試驗(yàn)的總次數(shù);頻率反映的是對(duì)象頻繁出現(xiàn)的相對(duì)數(shù)據(jù),所有的頻率之和是1。

  考點(diǎn)28

  中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率的應(yīng)用

  考核要求:

 。1)了解基本統(tǒng)計(jì)量(平均數(shù)、眾數(shù)、中位數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率)的意計(jì)算及其應(yīng)用,并掌握其概念和計(jì)算方法;

 。2)正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計(jì)算結(jié)果作出判斷和預(yù)測(cè);

 。3)能將多個(gè)圖表結(jié)合起來(lái),綜合處理圖表提供的數(shù)據(jù),會(huì)利用各種統(tǒng)計(jì)量來(lái)進(jìn)行推理和分析,研究解決有關(guān)的實(shí)際生活中問(wèn)題,然后作出合理的解決。

  如何整理數(shù)學(xué)學(xué)科課堂筆記?

  一、內(nèi)容提綱。

  老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線(xiàn)索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。

  二、疑難問(wèn)題。

  將課堂上未聽(tīng)懂的問(wèn)題及時(shí)記下來(lái),便于課后請(qǐng)教同學(xué)或老師,把問(wèn)題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問(wèn)題對(duì)部分學(xué)生來(lái)說(shuō),是屬于疑難問(wèn)題,由于課堂上來(lái)不及思考成熟,記下疑難問(wèn)題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。

  三、思路方法。

  對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來(lái)后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開(kāi)闊視野,開(kāi)發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。

  四、歸納總結(jié)。注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。

  五、錯(cuò)誤反思。

  學(xué)習(xí)過(guò)程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。

  數(shù)學(xué)常用解題技巧有哪些?

  第一,應(yīng)堅(jiān)持由易到難的做題順序。

  近年來(lái)高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱(chēng)為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱(chēng)為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。

  第二,審題是關(guān)鍵。

  把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫(xiě)的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。

  第三,屬于非智力因素導(dǎo)致想不起來(lái)。

  本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì)做怎么辦?應(yīng)先跳過(guò)去,不是這道題不會(huì)做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩(wěn)定下來(lái)以后再回過(guò)頭來(lái)看會(huì)頓悟,豁然開(kāi)朗。

  第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。

  因?yàn)檫x擇題和填空題都是看結(jié)果不看過(guò)程,因此在這個(gè)過(guò)程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_(kāi)始也不看它的四個(gè)選項(xiàng),從頭到尾寫(xiě)完了之后一看答案就寫(xiě)上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來(lái)。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡(jiǎn)單地說(shuō),規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫(xiě)、誰(shuí)看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過(guò)程,這是規(guī)范答題。

  學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。

  經(jīng)過(guò)上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì)更大。

  2、研究每題都考什么

  數(shù)學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過(guò)一題聯(lián)想到很多題。

  3、錯(cuò)一次反思一次

  每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類(lèi)似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來(lái)。

  學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了。

  4、分析試卷總結(jié)經(jīng)驗(yàn)

  每次考試結(jié)束試卷發(fā)下來(lái),要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類(lèi)。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  (1)凡能寫(xiě)成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類(lèi):①整數(shù)②分?jǐn)?shù)

  (3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);

  a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0?a是負(fù)數(shù)或0a是非正數(shù).

  有理數(shù)比大。

  (1)正數(shù)的`絕對(duì)值越大,這個(gè)數(shù)越大;

  (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;

  (3)正數(shù)大于一切負(fù)數(shù);

  (4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;

  (5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;

  (6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  一、知識(shí)點(diǎn):

  1、“三線(xiàn)八角”

  ①如何由線(xiàn)找角:一看線(xiàn),二看型。同位角是“F”型;內(nèi)錯(cuò)角是“Z”型;同旁?xún)?nèi)角是“U”型。

 、谌绾斡山钦揖(xiàn):組成角的三條線(xiàn)中的公共直線(xiàn)就是截線(xiàn)。

  2、平行公理:

  如果兩條直線(xiàn)都和第三條直線(xiàn)平行,那么這兩條直線(xiàn)也平行。簡(jiǎn)述:平行于同一條直線(xiàn)的兩條直線(xiàn)平行。補(bǔ)充定理:

  如果兩條直線(xiàn)都和第三條直線(xiàn)垂直,那么這兩條直線(xiàn)也平行。簡(jiǎn)述:垂直于同一條直線(xiàn)的兩條直線(xiàn)平行。

  3、平行線(xiàn)的判定和性質(zhì):

  判定定理?xiàng)l件同位角相等內(nèi)錯(cuò)角相等同旁?xún)?nèi)角互補(bǔ)結(jié)論兩直線(xiàn)平行兩直線(xiàn)平行兩直線(xiàn)平行條件兩直線(xiàn)平行兩直線(xiàn)平行兩直線(xiàn)平行性質(zhì)定理結(jié)論同位角相等內(nèi)錯(cuò)角相等同旁?xún)?nèi)角互補(bǔ)

  4、圖形平移的性質(zhì):

  圖形經(jīng)過(guò)平移,連接各組對(duì)應(yīng)點(diǎn)所得的線(xiàn)段互相平行(或在同一直線(xiàn)上)并且相等。

  5、三角形三邊之間的關(guān)系:

  三角形的任意兩邊之和大于第三邊;三角形的任意兩邊之差小于第三邊。

  若三角形的三邊分別為a、b、c,則abcab

  6、三角形中的主要線(xiàn)段:

  三角形的高、角平分線(xiàn)、中線(xiàn)。

  注意:

 、偃切蔚母摺⒔瞧椒志(xiàn)、中線(xiàn)都是線(xiàn)段。

 、诟摺⒔瞧椒志(xiàn)、中線(xiàn)的應(yīng)用。

  7、三角形的內(nèi)角和:

  三角形的3個(gè)內(nèi)角的和等于180°;直角三角形的兩個(gè)銳角互余;

  三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角。

  8、多邊形的內(nèi)角和:

  n邊形的內(nèi)角和等于(n-2)180°;任意多邊形的外角和等于360°。

  第八章冪的運(yùn)算

  nn

  冪(power)指乘方運(yùn)算的結(jié)果。a指將a自乘n次(n個(gè)a相乘)。把a(bǔ)看作乘方的結(jié)果,叫做a的n次冪。

  對(duì)于任意底數(shù)a,b,當(dāng)m,n為正整數(shù)時(shí),有

 。韓m+n

  aa=a(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加)mnm-n

  a÷a=a(同底數(shù)冪相除,底數(shù)不變,指數(shù)相減)mnmn(a)=a(冪的乘方,底數(shù)不變,指數(shù)相乘)

  nnn

  (ab)=aa(積的乘方,把積的每一個(gè)因式乘方,再把所得的冪相乘)0

  a=1(a≠0)(任何不等于0的數(shù)的0次冪等于1)-nn

  a=1/a(a≠0)(任何不等于0的數(shù)的-n次冪等于這個(gè)數(shù)的n次冪的倒數(shù))

  n

  科學(xué)記數(shù)法:把一個(gè)絕對(duì)值大于10(或者小于1)的整數(shù)記為a10的形式(其中1≤|a|<10),這種記數(shù)法叫做科學(xué)記數(shù)法.

  復(fù)習(xí)知識(shí)點(diǎn):

  1.乘方的概念

  求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在a中,a叫做底數(shù),n叫做指數(shù)。

  2.乘方的性質(zhì)

 。1)負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪的正數(shù)。

  2

  n(2)正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  第九章整式的乘法與因式分解

  一、整式乘除法

  單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù),相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字

  52525+27

  母,則連同它的指數(shù)作為積的一個(gè)因式.acbc=(ab)(cc)=abc=abc注:運(yùn)算順序先乘方,后乘除,最后加減

  單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式

  單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照順序,注意常數(shù)項(xiàng)、負(fù)號(hào).本質(zhì)是乘法分配律。

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相乘(a+b)(m+n)=am+an+bm+bn

  乘法公式:平方差公式:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.

  22

  (a+b)(a-b)=a-b

  完全平方公式:兩數(shù)和[或差]的平方,等于它們的平方和,加[或減]它們積的2

  222

  倍.(a±b)=a±2ab+b

  因式分解:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,也叫做把這個(gè)多項(xiàng)式分解因式.因式分解方法:

  1、提公因式法.關(guān)鍵:找出公因式

  公因式三部分:

  ①系數(shù)(數(shù)字)一各項(xiàng)系數(shù)最大公約數(shù);

 、谧帜--各項(xiàng)含有的相同字母;

 、壑笖(shù)--相同字母的最低次數(shù);

  步驟:

  第一步是找出公因式;

  第二步是提取公因式并確定另一因式.

  需注意,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來(lái)檢驗(yàn)是否漏項(xiàng).

  注意:

 、偬崛」蚴胶蟾饕蚴綉(yīng)該是最簡(jiǎn)形式,即分解到“底”;

 、谌绻囗(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.

  22

  2、公式法.

 、賏-b=(a+b)(a-b)兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積a、

  222

  b可以是數(shù)也可是式子

 、赼±2ab+b=(a±b)完全平方兩個(gè)數(shù)平方和加上或減去這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和[或差]的平方.3322

 、踴-y=(x-y)(x+xy+y)立方差公式

  2

  3、十字相乘(x+p)(x+q)=x+(p+q)x+pq因式分解三要素:

 。1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式

 。2)因式分解必須是恒等變形;

 。3)因式分解必須分解到每個(gè)因式都不能分解為止.弄清因式分解與整式乘法的內(nèi)在的關(guān)系:互逆變形,因式分解是把和差化為積的.形式,而整式乘法是把積化為和差

  添括號(hào)法則:如括號(hào)前面是正號(hào),括到括號(hào)里的各項(xiàng)都不變號(hào),如括號(hào)前是負(fù)號(hào)各項(xiàng)都得改符號(hào)。用去括號(hào)法則驗(yàn)證

  第十章二元一次方程組

 。、含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。

 。、含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的方程組叫做二元一次方程組。

 。、二元一次方程組中兩個(gè)方程的公共解叫做二元一次方程組的解。

  4、代入消元法:把二元一次方程中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來(lái),再帶入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解。這種方法叫做代入消元法,簡(jiǎn)稱(chēng)代入法。

 。、加減消元法:當(dāng)方程中兩個(gè)方程的某一未知數(shù)的系數(shù)相等或互為相反數(shù)時(shí),把這兩個(gè)方程的兩邊相加或相減來(lái)消去這個(gè)未知數(shù),從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡(jiǎn)稱(chēng)加減法.

 。、二元一次方程組解應(yīng)用題的一般步驟可概括為“審、找、列、解、答”五步,即:

 。1)審:通過(guò)審題,把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,分析已知數(shù)和未知數(shù),并用字母表示其中的兩個(gè)未知數(shù);

 。2)找:找出能夠表示題意兩個(gè)相等關(guān)系;

 。3)列:根據(jù)這兩個(gè)相等關(guān)系列出必需的代數(shù)式,從而列出方程組;

  (4)解:解這個(gè)方程組,求出兩個(gè)未知數(shù)的值;

 。5)答:在對(duì)求出的方程的解做出是否合理判斷的基礎(chǔ)上,寫(xiě)出答案.

  第十一章一元一次不等式

  一元一次不等式

  重點(diǎn):不等式的性質(zhì)和一元一次不等式的解法。

  難點(diǎn):一元一次不等式的解法和一元一次不等式解決在現(xiàn)實(shí)情景下的實(shí)際問(wèn)題。知識(shí)點(diǎn)一:不等式的概念

  1.不等式:

  用“<”(或“≤”),“>”(或“≥”)等不等號(hào)表示大小關(guān)系的式子,叫做不等式.用“≠”表示不等關(guān)系的式子也是不等式.

  要點(diǎn)詮釋?zhuān)?/p>

  (1)不等號(hào)的類(lèi)型:

 、佟啊佟弊x作“不等于”,它說(shuō)明兩個(gè)量之間的關(guān)系是不等的,但不能明確兩個(gè)量誰(shuí)大誰(shuí);

  (2)要正確用不等式表示兩個(gè)量的不等關(guān)系,就要正確理解“非負(fù)數(shù)”、“非正數(shù)”、“不大于”、“不小于”等數(shù)學(xué)術(shù)語(yǔ)的含義。

  2.不等式的解:

  能使不等式成立的未知數(shù)的值,叫做不等式的解。要點(diǎn)詮釋?zhuān)?/p>

  由不等式的解的定義可以知道,當(dāng)對(duì)不等式中的未知數(shù)取一個(gè)數(shù),若該數(shù)使不等式成立,則這個(gè)數(shù)就是不等式的一個(gè)解,我們可以和方程的解進(jìn)行對(duì)比理解,一般地,要判斷一個(gè)數(shù)是否為不等式的解,可將此數(shù)代入不等式的左邊和右邊利用不等式的概念進(jìn)行判斷。

  3.不等式的解集:

  一般地,一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式的解集的過(guò)程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集與不等式的解的區(qū)別:解集是能使不等式成立的未知數(shù)的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數(shù)的值.二者的關(guān)系是:解集包括解,所有的解組成了解集。要點(diǎn)詮釋?zhuān)?/p>

  不等式的解集必須符合兩個(gè)條件:

  (1)解集中的每一個(gè)數(shù)值都能使不等式成立;

  (2)能夠使不等式成立的所有的數(shù)值都在解集中。知識(shí)點(diǎn)

  二:不等式的基本性質(zhì)

  基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變。符號(hào)語(yǔ)言表示為:如果,那么

  基本性質(zhì)2:不等式的兩邊都乘上(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

  符號(hào)語(yǔ)言表示為:如果,并且,那么(或)。

  基本性質(zhì)3:不等式的兩邊都乘上(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  符號(hào)語(yǔ)言表示為:如果要點(diǎn)詮釋?zhuān)海⑶,那么(或?/p>

  (1)不等式的基本性質(zhì)1的學(xué)習(xí)與等式的性質(zhì)的學(xué)習(xí)類(lèi)似,可對(duì)比等式的性質(zhì)掌握;

  (2)要理解不等式的基本性質(zhì)1中的“同一個(gè)整式”的含義不僅包括相同的數(shù),還有相同的單項(xiàng)式或多項(xiàng)式;

  (3)“不等號(hào)的方向不變”,指的是如果原來(lái)是“>”,那么變化后仍是“>”;如果原來(lái)是“≤”,那么變化后仍是“≤”;“不等號(hào)的方向改變”指的是如果原來(lái)是“>”,那么變化后將成為“<”;如果原來(lái)是“≤”,那么變化后將成為“≥”;

  (4)運(yùn)用不等式的性質(zhì)對(duì)不等式進(jìn)行變形時(shí),要特別注意性質(zhì)3,在乘(除)同一個(gè)數(shù)時(shí),必須先弄清這個(gè)數(shù)是正數(shù)還是負(fù)數(shù),如果是負(fù)數(shù),要記住不等號(hào)的方向一定要改變。知識(shí)點(diǎn)三:一元一次不等式的概念

  只含有一個(gè)未知數(shù),且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不為0.這樣的不等式,叫做一元一次不等式。要點(diǎn)詮釋?zhuān)?/p>

  (1)一元一次不等式的概念可以從以下幾方面理解:

  ①左右兩邊都是整式(單項(xiàng)式或多項(xiàng)式);

 、谥缓幸粋(gè)未知數(shù);

 、畚粗獢(shù)的最高次數(shù)為1。

  (2)一元一次不等式和一元一次方程可以對(duì)比理解。

  相同點(diǎn):二者都是只含有一個(gè)未知數(shù),未知數(shù)的最高次數(shù)都是1,左右兩邊都是整式;不同點(diǎn):一元一次不等式表示不等關(guān)系(用“>”、“<”、“≥”、“≤”連接),一元一次方程表示相等關(guān)系(用“=”連接)。知識(shí)點(diǎn)

  四:一元一次不等式的解法

  1.解不等式:

  求不等式解的過(guò)程叫做解不等式。

  2.一元一次不等式的解法:

  與一元一次方程的解法類(lèi)似,其根據(jù)是不等式的基本性質(zhì),解一元一次不等式的一般步驟為:

  (1)去分母;

  (2)去括號(hào);

  (3)移項(xiàng);

  (4)合并同類(lèi)項(xiàng);

  (5)系數(shù)化為

  1.要點(diǎn)詮釋?zhuān)?/p>

  (1)在解一元一次不等式時(shí),每個(gè)步驟并不一定都要用到,可根據(jù)具體問(wèn)題靈活運(yùn)用

 。2)解不等式應(yīng)注意:

 、偃シ帜笗r(shí),每一項(xiàng)都要乘同一個(gè)數(shù),尤其不要漏乘常數(shù)項(xiàng);

 、谝祈(xiàng)時(shí)不要忘記變號(hào);

 、廴ダㄌ(hào)時(shí),若括號(hào)前面是負(fù)號(hào),括號(hào)里的每一項(xiàng)都要變號(hào);

 、茉诓坏仁絻蛇叾汲(或除以)同一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向要改變。

  3.不等式的解集在數(shù)軸上表示:

  在數(shù)軸上可以直觀地把不等式的解集表示出來(lái),能形象地說(shuō)明不等式有無(wú)限多個(gè)解,它對(duì)以后正確確定一元一次不等式組的解集有很大幫助。要點(diǎn)詮釋?zhuān)?/p>

  在用數(shù)軸表示不等式的解集時(shí),要確定邊界和方向:

 。1)邊界:有等號(hào)的是實(shí)心圓圈,無(wú)等號(hào)的是空心圓圈;

 。2)方向:大向右,小向左規(guī)律方法指導(dǎo)(包括對(duì)本部分主要題型、思想、方法的總結(jié))

  1、不等式的基本性質(zhì)是解不等式的主要依據(jù)。(性質(zhì)2、3要倍加小心)

  2、檢驗(yàn)一個(gè)數(shù)值是不是已知不等式的解,只要把這個(gè)數(shù)代入不等式,然后判斷不等式是否成立,若成立,就是不等式的解;若不成立,則就不是不等式的解。

  3、解一元一次不等式是一個(gè)有目的、有根據(jù)、有步驟的不等式變形,最終目的是將原不等式變?yōu)?/p>

  或

  的形式,其一般步驟是:

 。1)去分母;

 。2)去括號(hào);

 。3)移項(xiàng);

 。4)合并同類(lèi)項(xiàng);

  (5)化未知數(shù)的系數(shù)為1。

  這五個(gè)步驟根據(jù)具體題目,適當(dāng)選用,合理安排順序。但要注意,去分母或化未知數(shù)的系數(shù)為1時(shí),在不等式兩邊同乘以(或除以)同一個(gè)非零數(shù)時(shí),如果是個(gè)正數(shù),不等號(hào)方向不變,如果是個(gè)負(fù)數(shù),不等號(hào)方向改變。

  解一元一次不等式的一般步驟及注意事項(xiàng)變形名稱(chēng)具體做法注意事項(xiàng)去分母

  (1)不含分母的項(xiàng)不能漏乘

 。2)注意分?jǐn)?shù)線(xiàn)有括號(hào)作用,去掉分在不等式兩邊同乘以分母的最小公倍數(shù)母后,如分子是多項(xiàng)式,要加括號(hào)

  (3)不等式兩邊同乘以的數(shù)是個(gè)負(fù)數(shù),不等號(hào)方向改變。

 。1)運(yùn)用分配律去括號(hào)時(shí),不要漏乘根據(jù)題意,由內(nèi)而外或由外而內(nèi)去括號(hào)均括號(hào)內(nèi)的項(xiàng)可

 。2)如果括號(hào)前是“”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)的各項(xiàng)要變號(hào)把含未知數(shù)的項(xiàng)都移到不等式的一邊(通7去括號(hào)移項(xiàng)移項(xiàng)(過(guò)橋)變號(hào)常是左邊),不含未知數(shù)的項(xiàng)移到不等式的另一邊把不等式兩邊的同類(lèi)項(xiàng)分別合并,把不等合并同類(lèi)項(xiàng)式化為或的形式合并同類(lèi)項(xiàng)只是將同類(lèi)項(xiàng)的系數(shù)相加,字母及字母的指數(shù)不變。

  在不等式兩邊同除以未知數(shù)的系數(shù),若且,則不等式的解集為;若系數(shù)化1且,則不等式的

 。1)分子、分母不能顛倒

 。2)不等號(hào)改不改變由系數(shù)的正負(fù)性決定。

  則不

  (3)計(jì)算順序:先算數(shù)值后定符號(hào)且,解集為;若且等式的解集為;若則不等式的解集為;

  4、將一元一次不等式的解集在數(shù)軸上表示出來(lái),是數(shù)學(xué)中數(shù)形結(jié)合思想的重要體現(xiàn),要注意的是“三定”:一是定邊界點(diǎn),二是定方向,三是定空實(shí)。

  5、用一元一次不等式解答實(shí)際問(wèn)題,關(guān)鍵在于尋找問(wèn)題中的不等關(guān)系,從而列出不等式并求出不等式的解集,最后解決實(shí)際問(wèn)題。

  6、常見(jiàn)不等式的基本語(yǔ)言的意義:

 。1)(3)(5)(7),則x是正數(shù);

 。2),則x是非正數(shù);

 。4),則x大于y;

  (6),則x不小于y;

 。8),則x是負(fù)數(shù);,則x是非負(fù)數(shù);,則x小于y;,則x不大于y;

 。9)或,則x,y同號(hào);

 。10)或,則x,y異號(hào);

 。11)x,y都是正數(shù),若,則;若,則;

 。12)x,y都是負(fù)數(shù),若,則;若,則

  第十二章證明

  教學(xué)目標(biāo):

  1.掌握定義、命題、定理、逆命題、互逆命題等概念,知道一個(gè)命題是真命題,它的逆命題不一定是真命題。

  2.基本事實(shí)是其真實(shí)性不加證明的真命題,弄清真命題與定理的區(qū)別。

  3.會(huì)用舉反例說(shuō)明一個(gè)命題是假命題;掌握三角形內(nèi)角和定理的證明。重點(diǎn):定義、命題、定理、逆命題、互逆命題等概念的理解與運(yùn)用

  難點(diǎn):會(huì)用舉反例說(shuō)明一個(gè)命題是假命題;掌握三角形內(nèi)角和定理的證明。內(nèi)容:

  1.以基本事實(shí):“同位角相等,兩直線(xiàn)平行”證明:

  (1)“內(nèi)錯(cuò)角相等,兩直線(xiàn)平行”、“同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行”、“平行于同一條直線(xiàn)的兩條直線(xiàn)平行”

  2.基本事實(shí):“過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行”“兩直線(xiàn)平行,同位角相等”證明:

  (1)兩只相平行,內(nèi)錯(cuò)角相等

  (2)兩只相平行,同旁?xún)?nèi)角互補(bǔ)

  (3)三角形內(nèi)角和定理”

 。4)直角三角形的兩個(gè)銳角互余

 。5)有兩個(gè)銳角互余的三角形是直角三角形

 。6)三角形的外角等于與它不相鄰的兩個(gè)外角的和

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類(lèi)代數(shù)式叫單項(xiàng)式;數(shù)字或字母的乘積叫單項(xiàng)式(單獨(dú)的一個(gè)數(shù)字或字母也是單項(xiàng)式)。

  2.系數(shù):單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù)。任何一個(gè)非零數(shù)的零次方等于1.

  3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式。

  4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。

  5.常數(shù)項(xiàng):不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  6.多項(xiàng)式的排列

  (1)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母降冪排列。

  (2)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母升冪排列。

  7.多項(xiàng)式的排列時(shí)注意:

  (1)由于單項(xiàng)式的項(xiàng),包括它前面的.性質(zhì)符號(hào),因此在排列時(shí),仍需把每一項(xiàng)的性質(zhì)符號(hào)看作是這一項(xiàng)的一部分,一起移動(dòng)。

  (2)有兩個(gè)或兩個(gè)以上字母的多項(xiàng)式,排列時(shí),要注意:

  a.先確認(rèn)按照哪個(gè)字母的指數(shù)來(lái)排列。

  b.確定按這個(gè)字母向里排列,還是向外排列。

  (3)整式:

  單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)為整式。

  8.多項(xiàng)式的加法:

  多項(xiàng)式的加法,是指多項(xiàng)式的同類(lèi)項(xiàng)的系數(shù)相加(即合并同類(lèi)項(xiàng))。

  9.同類(lèi)項(xiàng):所含字母相同,并且相同字母的次數(shù)也分別相同的項(xiàng)叫做同類(lèi)項(xiàng)。

  10.合并同類(lèi)項(xiàng):多項(xiàng)式中的同類(lèi)項(xiàng)可以合并,叫做合并同類(lèi)項(xiàng),合并同類(lèi)項(xiàng)的法則是:同類(lèi)項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。

  11.掌握同類(lèi)項(xiàng)的概念時(shí)注意:

  (1)判斷幾個(gè)單項(xiàng)式或項(xiàng),是否是同類(lèi)項(xiàng),就要掌握兩個(gè)條件:

 、偎帜赶嗤

 、谙嗤帜傅拇螖(shù)也相同。

  (2)同類(lèi)項(xiàng)與系數(shù)無(wú)關(guān),與字母排列的順序也無(wú)關(guān)。

  (3)所有常數(shù)項(xiàng)都是同類(lèi)項(xiàng)。

  12.合并同類(lèi)項(xiàng)步驟:

  (1)準(zhǔn)確的找出同類(lèi)項(xiàng);

  (2)逆用分配律,把同類(lèi)項(xiàng)的系數(shù)加在一起(用小括號(hào)),字母和字母的指數(shù)不變;

  (3)寫(xiě)出合并后的結(jié)果。

  13.在掌握合并同類(lèi)項(xiàng)時(shí)注意:

  (1)如果兩個(gè)同類(lèi)項(xiàng)的系數(shù)互為相反數(shù),合并同類(lèi)項(xiàng)后,結(jié)果為0;

  (2)不要漏掉不能合并的項(xiàng);

  (3)只要不再有同類(lèi)項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。

  14.整式的拓展

  整式的乘除:重點(diǎn)是整式的乘除,尤其是其中的乘法公式。乘法公式的結(jié)構(gòu)特征以及公式中的字母的廣泛含義,學(xué)生不易掌握.因此,乘法公式的靈活運(yùn)用是難點(diǎn),添括號(hào)(或去括號(hào))時(shí),括號(hào)中符號(hào)的處理是另一個(gè)難點(diǎn)。添括號(hào)(或去括號(hào))是對(duì)多項(xiàng)式的變形,要根據(jù)添括號(hào)(或去括號(hào))的法則進(jìn)行。在整式的乘除中,單項(xiàng)式的乘除是關(guān)鍵,這是因?yàn),一般多?xiàng)式的乘除都要“轉(zhuǎn)化”為單項(xiàng)式的乘除。

  整式四則運(yùn)算的主要題型有:

  (1)單項(xiàng)式的四則運(yùn)算

  此類(lèi)題目多以選擇題和應(yīng)用題的形式出現(xiàn),其特點(diǎn)是考查單項(xiàng)式的四則運(yùn)算。

  (2)單項(xiàng)式與多項(xiàng)式的運(yùn)算

  

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  一、 重要概念

  1。數(shù)的分類(lèi)及概念

  數(shù)系表:

  說(shuō)明:“分類(lèi)”的原則:1)相稱(chēng)(不重、不漏)

  2)有標(biāo)準(zhǔn)

  2。非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱(chēng)。(表為:x≥0)

  常見(jiàn)的非負(fù)數(shù)有:

  性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。

  3。倒數(shù): ①定義及表示法

 、谛再|(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時(shí),1/a1;D。積為1。

  4。相反數(shù): ①定義及表示法

 、谛再|(zhì):A.a≠0時(shí),a≠-a;B.a與-a在數(shù)軸上的位置;C。和為0,商為-1。

  5。數(shù)軸:①定義(“三要素”)

  ②作用:A。直觀地比較實(shí)數(shù)的大小;B。明確體現(xiàn)絕對(duì)值意義;C。建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

  6。奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7。絕對(duì)值:①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的'距離。

 、讴│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  (1)凡能寫(xiě)成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類(lèi): ① 整數(shù) ②分?jǐn)?shù)

  (3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的`數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù) 0和正整數(shù);a0 a是正數(shù);a0 a是負(fù)數(shù);

  a≥0 a是正數(shù)或0 a是非負(fù)數(shù);a≤ 0 ? a是負(fù)數(shù)或0 a是非正數(shù).

  有理數(shù)比大。

  (1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;

  (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;

  (3)正數(shù)大于一切負(fù)數(shù);

  (4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;

  (5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;

  (6)大數(shù)-小數(shù) 0,小數(shù)-大數(shù) 0.

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  圓的定理:

  1不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

  ②弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形

  4圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7同圓或等圓的半徑相等

  8到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  9定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  中考數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)口訣

  有理數(shù)的加法運(yùn)算

  同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,符號(hào)跟著大的跑;絕對(duì)值相等“零”正好。

  合并同類(lèi)項(xiàng)

  合并同類(lèi)項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

  去、添括號(hào)法則

  去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。

  一元一次方程

  已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。

  平方差公式

  平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方公式

  完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

  首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。

  因式分解

  一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來(lái)分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。

  單項(xiàng)式運(yùn)算

  加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。

  一元一次不等式解題步驟

  去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類(lèi)項(xiàng)合并好,再把系數(shù)來(lái)除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。

  一元一次不等式組的解集

  大大取較大,小小取較小,小大、大小取中間,大小、小大無(wú)處找。

  一元二次不等式、一元一次絕對(duì)值不等式的解集

  大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。

  分式混合運(yùn)算法則

  分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);

  乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;

  加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;

  變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。

  中考數(shù)學(xué)知識(shí)點(diǎn)歸納:平面直角坐標(biāo)系

  平面直角坐標(biāo)系

  1、平面直角坐標(biāo)系

  在平面內(nèi)畫(huà)兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。

  其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

  為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點(diǎn),不屬于任何象限。

  2、點(diǎn)的坐標(biāo)的概念

  點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

  中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理2

  函數(shù)

  ①位置的確定與平面直角坐標(biāo)系

  位置的確定

  坐標(biāo)變換

  平面直角坐標(biāo)系內(nèi)點(diǎn)的特征

  平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號(hào)與點(diǎn)的象限位置

  對(duì)稱(chēng)問(wèn)題:P(x,y)→Q(x,- y)關(guān)于x軸對(duì)稱(chēng)P(x,y)→Q(- x,y)關(guān)于y軸對(duì)稱(chēng)P(x,y)→Q(- x,-y)關(guān)于原點(diǎn)對(duì)稱(chēng)

  變量、自變量、因變量、函數(shù)的定義

  函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數(shù)的圖象:變量的變化趨勢(shì)描述

 、谝淮魏瘮(shù)與正比例函數(shù)

  一次函數(shù)的定義與正比例函數(shù)的定義

  一次函數(shù)的圖象:直線(xiàn),畫(huà)法

  一次函數(shù)的性質(zhì)(增減性)

  一次函數(shù)y=kx+b(k≠0)中k、b符號(hào)與圖象位置

  待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)

  一次函數(shù)的平移問(wèn)題

  一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)

  一次函數(shù)的實(shí)際應(yīng)用

  一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合

  中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理3

  中考難點(diǎn)數(shù)學(xué)知識(shí)點(diǎn)

  三角函數(shù)關(guān)系

  倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關(guān)系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  倒數(shù)關(guān)系

  對(duì)角線(xiàn)上兩個(gè)函數(shù)互為倒數(shù);

  商數(shù)關(guān)系

  六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線(xiàn)兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

  平方關(guān)系

  在帶有陰影線(xiàn)的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

  中考數(shù)學(xué)最易出錯(cuò)的知識(shí)點(diǎn)

  數(shù)與式

  易錯(cuò)點(diǎn)1:有理數(shù)、無(wú)理數(shù)以及實(shí)數(shù)的有關(guān)概念理解錯(cuò)誤,相反數(shù)、倒數(shù)、絕對(duì)值的意義概念混淆。以及絕對(duì)值與數(shù)的分類(lèi)。每年選擇必考。

  易錯(cuò)點(diǎn)2:實(shí)數(shù)的運(yùn)算要掌握好與實(shí)數(shù)有關(guān)的概念、性質(zhì),靈活地運(yùn)用各種運(yùn)算律,關(guān)鍵是把好符號(hào)關(guān);在較復(fù)雜的運(yùn)算中,不注意運(yùn)算順序或者不合理使用運(yùn)算律,從而使運(yùn)算出現(xiàn)錯(cuò)誤。

  易錯(cuò)點(diǎn)3:平方根、算術(shù)平方根、立方根的區(qū)別。填空題必考。

  易錯(cuò)點(diǎn)4:求分式值為零時(shí)學(xué)生易忽略分母不能為零。

  易錯(cuò)點(diǎn)5:分式運(yùn)算時(shí)要注意運(yùn)算法則和符號(hào)的`變化。當(dāng)分式的分子分母是多項(xiàng)式時(shí)要先因式分解,因式分解要分解到不能再分解為止,注意計(jì)算方法,不能去分母,把分式化為最簡(jiǎn)分式。填空題必考。

  易錯(cuò)點(diǎn)6:非負(fù)數(shù)的性質(zhì):幾個(gè)非負(fù)數(shù)的和為0,每個(gè)式子都為0;整體代入法;完全平方式。

  易錯(cuò)點(diǎn)7:計(jì)算第一題必考。五個(gè)基本數(shù)的計(jì)算:0指數(shù),三角函數(shù),絕對(duì)值,負(fù)指數(shù),二次根式的化簡(jiǎn)。

  易錯(cuò)點(diǎn)8:科學(xué)記數(shù)法。精確度,有效數(shù)字。這個(gè)上海還沒(méi)有考過(guò),知道就好!

  易錯(cuò)點(diǎn)9:代入求值要使式子有意義。各種數(shù)式的計(jì)算方法要掌握,一定要注意計(jì)算順序。

  方程(組)與不等式(組)

  易錯(cuò)點(diǎn)1:各種方程(組)的解法要熟練掌握,方程(組)無(wú)解的意義是找不到等式成立的條件。

  易錯(cuò)點(diǎn)2:運(yùn)用等式性質(zhì)時(shí),兩邊同除以一個(gè)數(shù)必須要注意不能為0的情況,還要關(guān)注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個(gè)帶X公因式要回頭檢驗(yàn)!

  易錯(cuò)點(diǎn)3:運(yùn)用不等式的性質(zhì)3時(shí),容易忘記改不改變符號(hào)的方向而導(dǎo)致結(jié)果出錯(cuò)。

  易錯(cuò)點(diǎn)4:關(guān)于一元二次方程的取值范圍的題目易忽視二次項(xiàng)系數(shù)不為0導(dǎo)致出錯(cuò)。

  易錯(cuò)點(diǎn)5:關(guān)于一元一次不等式組有解無(wú)解的條件易忽視相等的情況。

  易錯(cuò)點(diǎn)6:解分式方程時(shí)首要步驟去分母,分?jǐn)?shù)相相當(dāng)于括號(hào),易忘記根檢驗(yàn),導(dǎo)致運(yùn)算結(jié)果出錯(cuò)。

  易錯(cuò)點(diǎn)7:不等式(組)的解得問(wèn)題要先確定解集,確定解集的方法運(yùn)用數(shù)軸。

  易錯(cuò)點(diǎn)8:利用函數(shù)圖象求不等式的解集和方程的解。

  中考數(shù)學(xué)易出錯(cuò)的知識(shí)點(diǎn)

  函數(shù)

  易錯(cuò)點(diǎn)1:各個(gè)待定系數(shù)表示的的意義。

  易錯(cuò)點(diǎn)2:熟練掌握各種函數(shù)解析式的求法,有幾個(gè)的待定系數(shù)就要幾個(gè)點(diǎn)值。

  易錯(cuò)點(diǎn)3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質(zhì)確定增減性。

  易錯(cuò)點(diǎn)4:兩個(gè)變量利用函數(shù)模型解實(shí)際問(wèn)題,注意區(qū)別方程、函數(shù)、不等式模型解決不等領(lǐng)域的問(wèn)題。

  易錯(cuò)點(diǎn)5:利用函數(shù)圖象進(jìn)行分類(lèi)(平行四邊形、相似、直角三角形、等腰三角形)以及分類(lèi)的求解方法。

  易錯(cuò)點(diǎn)6:與坐標(biāo)軸交點(diǎn)坐標(biāo)一定要會(huì)求。面積值的求解方法,距離之和的最小值的求解方法,距離之差值的求解方法。

  易錯(cuò)點(diǎn)7:數(shù)形結(jié)合思想方法的運(yùn)用,還應(yīng)注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學(xué)會(huì)從復(fù)雜圖形分解為簡(jiǎn)單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。

  易錯(cuò)點(diǎn)8:自變量的取值范圍有:二次根式的被開(kāi)方數(shù)是非負(fù)數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實(shí)數(shù)。

  中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理4

  中考數(shù)學(xué)較難的知識(shí)點(diǎn)

  一元二次方程的基本概念

  1.一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2.

  2.一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2.

  3.一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7.

  4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.

  知識(shí)點(diǎn)2:直角坐標(biāo)系與點(diǎn)的位置

  1.直角坐標(biāo)系中,點(diǎn)A(3,0)在y軸上。

  2.直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0.

  3.直角坐標(biāo)系中,點(diǎn)A(1,1)在第一象限。

  4.直角坐標(biāo)系中,點(diǎn)A(-2,3)在第四象限。

  5.直角坐標(biāo)系中,點(diǎn)A(-2,1)在第二象限。

  知識(shí)點(diǎn)3:已知自變量的值求函數(shù)值

  1.當(dāng)x=2時(shí),函數(shù)y=的值為1.

  2.當(dāng)x=3時(shí),函數(shù)y=的值為1.

  3.當(dāng)x=-1時(shí),函數(shù)y=的值為1.

  知識(shí)點(diǎn)4:基本函數(shù)的概念及性質(zhì)

  1.函數(shù)y=-8x是一次函數(shù)。

  2.函數(shù)y=4x+1是正比例函數(shù)。

  3.函數(shù)是反比例函數(shù)。

  4.拋物線(xiàn)y=-3(x-2)2-5的開(kāi)口向下。

  5.拋物線(xiàn)y=4(x-3)2-10的對(duì)稱(chēng)軸是x=3.

  6.拋物線(xiàn)的頂點(diǎn)坐標(biāo)是(1,2)。

  7.反比例函數(shù)的圖象在第一、三象限。

  知識(shí)點(diǎn)5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)

  1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.

  2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.

  3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.

  知識(shí)點(diǎn)6:特殊三角函數(shù)值

  30°=根號(hào)3/2 。

  260°+ cos260°= 1.

  3.2sin30°+ tan45°= 2.

  45°= 1.

  60°+ sin30°= 1.

  中考數(shù)學(xué)難點(diǎn)知識(shí)點(diǎn)總結(jié)《幾何》

  初中幾何公式:線(xiàn)

  1.同角或等角的余角相等

  2.過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  3.過(guò)兩點(diǎn)有且只有一條直線(xiàn)

  4.兩點(diǎn)之間線(xiàn)段最短

  5.同角或等角的補(bǔ)角相等

  6.直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

  7.平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行

  8.如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行

  初中幾何公式:角

  9.同位角相等,兩直線(xiàn)平行

  10.內(nèi)錯(cuò)角相等,兩直線(xiàn)平行

  11.同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行

  12.兩直線(xiàn)平行,同位角相等

  13.兩直線(xiàn)平行,內(nèi)錯(cuò)角相等

  14.兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)

  初中幾何公式:三角形

  15.定理三角形兩邊的和大于第三邊

  16.推論三角形兩邊的差小于第三邊

  17.三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

  18.推論1直角三角形的兩個(gè)銳角互余

  19.推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20.推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22.邊角邊公理有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  23.角邊角公理有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  24.推論有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  25.邊邊邊公理有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26.斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  27.定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28.定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上

  29.角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  中考數(shù)學(xué)備考難點(diǎn):分式方程

  分式方程

  1、分式方程

  分母里含有未知數(shù)的方程叫做分式方程。

  2、分式方程的一般方法

  解分式方程的思想是將“分式方程”轉(zhuǎn)化為“整式方程”。它的一般解法是:

  (1)去分母,方程兩邊都乘以最簡(jiǎn)公分母

  (2)解所得的整式方程

  (3)驗(yàn)根:將所得的根代入最簡(jiǎn)公分母,若等于零,就是增根,應(yīng)該舍去;若不等于零,就是原方程的根。

  3、分式方程的特殊解法

  換元法:

  換元法是中學(xué)數(shù)學(xué)中的一個(gè)重要的數(shù)學(xué)思想,其應(yīng)用非常廣泛,當(dāng)分式方程具有某種特殊形式,一般的去分母不易解決時(shí),可考慮用換元法。

  中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理5

  1.數(shù)軸

  (1)數(shù)軸的概念:規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸.

  數(shù)軸的三要素:原點(diǎn),單位長(zhǎng)度,正方向。

  (2)數(shù)軸上的點(diǎn):所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,但數(shù)軸上的點(diǎn)不都表示有理數(shù).(一般取右方向?yàn)檎较,?shù)軸上的點(diǎn)對(duì)應(yīng)任意實(shí)數(shù),包括無(wú)理數(shù).)

  (3)用數(shù)軸比較大小:一般來(lái)說(shuō),當(dāng)數(shù)軸方向朝右時(shí),右邊的數(shù)總比左邊的數(shù)大。

  重點(diǎn)知識(shí):

  初中數(shù)學(xué)第一課,認(rèn)識(shí)正數(shù)與負(fù)數(shù)!新初一的來(lái)~

  2.相反數(shù)

  (1)相反數(shù)的概念:只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù).

  (2)相反數(shù)的意義:掌握相反數(shù)是成對(duì)出現(xiàn)的,不能單獨(dú)存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個(gè)數(shù),它們分別在原點(diǎn)兩旁且到原點(diǎn)距離相等。

  (3)多重符號(hào)的化簡(jiǎn):與“+”個(gè)數(shù)無(wú)關(guān),有奇數(shù)個(gè)“﹣”號(hào)結(jié)果為負(fù),有偶數(shù)個(gè)“﹣”號(hào),結(jié)果為正。

  (4)規(guī)律方法總結(jié):求一個(gè)數(shù)的相反數(shù)的方法就是在這個(gè)數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時(shí)m+n是一個(gè)整體,在整體前面添負(fù)號(hào)時(shí),要用小括號(hào)。

  3.絕對(duì)值

  1.概念:數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值。

 、倩橄喾磾(shù)的兩個(gè)數(shù)絕對(duì)值相等;

 、诮^對(duì)值等于一個(gè)正數(shù)的數(shù)有兩個(gè),絕對(duì)值等于0的數(shù)有一個(gè),沒(méi)有絕對(duì)值等于負(fù)數(shù)的數(shù).

 、塾欣頂(shù)的絕對(duì)值都是非負(fù)數(shù).

  2.如果用字母a表示有理數(shù),則數(shù)a絕對(duì)值要由字母a本身的取值來(lái)確定:

 、佼(dāng)a是正有理數(shù)時(shí),a的絕對(duì)值是它本身a;

  ②當(dāng)a是負(fù)有理數(shù)時(shí),a的絕對(duì)值是它的相反數(shù)﹣a;

  ③當(dāng)a是零時(shí),a的絕對(duì)值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  中考數(shù)學(xué)知識(shí)點(diǎn)

  1、反比例函數(shù)的概念

  一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。

  2、反比例函數(shù)的圖像

  反比例函數(shù)的圖像是雙曲線(xiàn),它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱(chēng)。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線(xiàn)的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。

  3、反比例函數(shù)的性質(zhì)

  反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,y的取值范圍是y0;

 、诋(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別

  在第一、三象限。在每個(gè)象限內(nèi),y

  隨x的增大而減小。

 、賦的取值范圍是x0,y的取值范圍是y0;

 、诋(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別

  在第二、四象限。在每個(gè)象限內(nèi),y

  隨x的增大而增大。

  4、反比例函數(shù)解析式的確定

  確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。

  5、反比例函數(shù)的幾何意義

  設(shè)是反比例函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P作軸、軸的垂線(xiàn),垂足為A,則

  (1)△OPA的面積.

  (2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無(wú)論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。

  矩形PCEF面積=,平行四邊形PDEA面積=

  二次函數(shù)中考數(shù)學(xué)知識(shí)點(diǎn)

  二次函數(shù)的解析式有三種形式:

  (1)一般式:

  (2)頂點(diǎn)式:

  (3)當(dāng)拋物線(xiàn)與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示。

  注意:拋物線(xiàn)位置由決定.

  (1)決定拋物線(xiàn)的開(kāi)口方向

 、匍_(kāi)口向上.

 、陂_(kāi)口向下.

  (2)決定拋物線(xiàn)與y軸交點(diǎn)的位置.

 、賵D象與y軸交點(diǎn)在x軸上方.

 、趫D象過(guò)原點(diǎn).

  ③圖象與y軸交點(diǎn)在x軸下方.

  (3)決定拋物線(xiàn)對(duì)稱(chēng)軸的位置(對(duì)稱(chēng)軸:)

  ①同號(hào)對(duì)稱(chēng)軸在y軸左側(cè).

 、趯(duì)稱(chēng)軸是y軸.

 、郛愄(hào)對(duì)稱(chēng)軸在y軸右側(cè).

  (4)頂點(diǎn)坐標(biāo).

  (5)決定拋物線(xiàn)與x軸的交點(diǎn)情況.

  ①△>0拋物線(xiàn)與x軸有兩個(gè)不同交點(diǎn).

 、凇=0拋物線(xiàn)與x軸有的公共點(diǎn)(相切).

 、邸<0拋物線(xiàn)與x軸無(wú)公共點(diǎn).

  (6)二次函數(shù)是否具有、最小值由a判斷.

 、佼(dāng)a>0時(shí),拋物線(xiàn)有最低點(diǎn),函數(shù)有最小值.

  ②當(dāng)a<0時(shí),拋物線(xiàn)有點(diǎn),函數(shù)有值.

  (7)的符號(hào)的判定:

  表達(dá)式,請(qǐng)代值,對(duì)應(yīng)y值定正負(fù);

  對(duì)稱(chēng)軸,用處多,三種式子相約;

  軸兩側(cè)判,左同右異中為0;

  1的兩側(cè)判,左同右異中為0;

  -1兩側(cè)判,左異右同中為0.

  (8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過(guò)頂點(diǎn)來(lái)尋找。

  (9)對(duì)稱(chēng):關(guān)于x軸對(duì)稱(chēng)的解析式為,關(guān)于y軸對(duì)稱(chēng)的解析式為,關(guān)于原點(diǎn)軸對(duì)稱(chēng)的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。

  (10)結(jié)論:

 、俣魏瘮(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;

 、诙魏瘮(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);

 、鄱魏瘮(shù)(經(jīng)過(guò)原點(diǎn),則。

  (11)二次函數(shù)的解析式:

  ①一般式:(,用于已知三點(diǎn)。

 、陧旤c(diǎn)式:,用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ(chēng)軸。

  (3)交點(diǎn)式:,其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對(duì)稱(chēng)軸和在x軸上的截距,也可用此式。

  圓柱體要領(lǐng):如果用垂直于軸的兩個(gè)平面去截圓柱面,那么兩個(gè)截面和圓柱面所圍成的幾何體叫做直圓柱,簡(jiǎn)稱(chēng)圓柱。

  圓柱體的定義

  1、旋轉(zhuǎn)定義法:一個(gè)長(zhǎng)方形以一邊為軸順時(shí)針或逆時(shí)針旋轉(zhuǎn)一周,所經(jīng)過(guò)的空間叫做圓柱體。

  2、平移定義法:以一個(gè)圓為底面,上或下移動(dòng)一定的距離,所經(jīng)過(guò)的空間叫做圓柱體。

  性質(zhì) 1.圓柱的兩個(gè)圓面叫底面,周?chē)拿娼袀?cè)面,一個(gè)圓柱體是由兩個(gè)底面和一個(gè)側(cè)面組成的。

  2.圓柱體的兩個(gè)底面是完全相同的兩個(gè)圓面。兩個(gè)底面之間的距離是圓柱體的高。

  3.圓柱體的側(cè)面是一個(gè)曲面,圓柱體的側(cè)面的展開(kāi)圖是一個(gè)長(zhǎng)方形或正方形。

  圓柱的側(cè)面積=底面周長(zhǎng)x高,即:

  S側(cè)面積=Ch=2πrh

  底面周長(zhǎng)C=2πr=πd

  圓柱的表面積=側(cè)面積+底面積x2=2πr2+Ch=2πr(r+h)

  4.圓柱的體積=底面積x高

  即V=S底面積×h=(π×r×r)h

  5.等底等高的圓柱的體積是圓錐的3倍6.圓柱體可以用一個(gè)平行四邊形圍成

  圓柱的表面積=圓柱的表面積=側(cè)面積+底面積x2

  6.把圓柱沿底面直徑分成兩個(gè)同樣的部分,每一個(gè)部分叫半圓柱。這時(shí)與原來(lái)的圓柱比較,體積不變、表面積增加兩個(gè)直徑X高的長(zhǎng)方形。

  7.圓柱的軸截面是直徑x高的長(zhǎng)方形,橫截面是與底面相同的圓。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  1、變量與常量

  在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的`三種表示法及其優(yōu)缺點(diǎn)

 。1)解析法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

 。2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫(huà)其圖像的一般步驟

 。1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。

 。2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。

 。3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  在日常的練習(xí)、作業(yè)和考試中,學(xué)生都會(huì)或多或少地出現(xiàn)一些做錯(cuò)的題目,而對(duì)待錯(cuò)題的態(tài)度不同,學(xué)習(xí)的效果就會(huì)有很大的差別。丁老師就來(lái)告訴同學(xué)們?cè)趺磥?lái)用好我們的錯(cuò)題吧!

  錯(cuò)題主要涉及錯(cuò)題收集和存檔、錯(cuò)題改正、錯(cuò)題分享、錯(cuò)題應(yīng)用四個(gè)環(huán)節(jié)。

  一、錯(cuò)題收集和存檔:

  這里的錯(cuò)題,不僅指各級(jí)各類(lèi)數(shù)學(xué)考試中的錯(cuò)題,還包括平時(shí)數(shù)學(xué)作業(yè)中做錯(cuò)的題目。最好把錯(cuò)題都摘錄到一個(gè)固定的本子上面(錯(cuò)題本),便于自己以后查閱。即使是曾經(jīng)錯(cuò)了而現(xiàn)在理解了的題目也最好登記在冊(cè),它們形成獨(dú)具個(gè)性的學(xué)習(xí)軌跡,有利于知識(shí)的理解、識(shí)記、儲(chǔ)存和提取。

  在進(jìn)行錯(cuò)題收集的時(shí)候,一定要注意分類(lèi)。分類(lèi)的方法很多,可以按照錯(cuò)題原因分類(lèi)、按照錯(cuò)題中所隱含知識(shí)的章節(jié)進(jìn)行分類(lèi),甚至還可以按照題型進(jìn)行分類(lèi)。這樣整理好的錯(cuò)題是系統(tǒng)的,到最后復(fù)習(xí)時(shí)就有比較強(qiáng)的針對(duì)性。

  二、錯(cuò)題改正:

  收集錯(cuò)題以后,接下來(lái)就是改錯(cuò)了,這是錯(cuò)題管理的目的。學(xué)生要爭(zhēng)取自己獨(dú)立對(duì)錯(cuò)題進(jìn)行分析,然后找出正確的解答,并訂正。在自己獨(dú)立思考的基礎(chǔ)上,如果還是得不到答案,這時(shí)候就需要積極地求助他人了,可以是學(xué)得比較好的同學(xué),也可以是老師。讓他們幫自己分析原因,在他們的啟發(fā)引導(dǎo)下進(jìn)行改正。找到出錯(cuò)的癥結(jié)所在,最好能在錯(cuò)題后面附上自己的心得體會(huì),可以依次回答以下問(wèn)題:

  這道題目錯(cuò)在什么地方?

  這道題目為什么做錯(cuò)了?(錯(cuò)在計(jì)算、化簡(jiǎn)?錯(cuò)在概念理解?錯(cuò)在理解題意?錯(cuò)在邏輯關(guān)系?錯(cuò)在以偏概全?錯(cuò)在粗心大意?錯(cuò)在思維品質(zhì)?錯(cuò)在類(lèi)比?等等。)

  這道題目正確的做法是什么?

  這道題目有沒(méi)有其它解法?哪種方法更好?

  錯(cuò)題改正這個(gè)過(guò)程其實(shí)就是學(xué)生再學(xué)習(xí)、再認(rèn)識(shí)、再提高的過(guò)程,它使學(xué)生對(duì)易出錯(cuò)的知識(shí)的理解更全面透徹,掌握更加牢固,同時(shí)也提高了學(xué)生自主學(xué)習(xí)的能力。一般意義上,任何學(xué)習(xí)都需要反思,錯(cuò)題改正是反思的具體途徑之一。

  整理錯(cuò)題并不是為了做得好看,是為了實(shí)用,對(duì)自己的學(xué)習(xí)有幫助。因而沒(méi)有固定的標(biāo)準(zhǔn),關(guān)鍵要符合學(xué)生自己的習(xí)慣。但是學(xué)生一定要抽時(shí)間翻閱自己辛勤勞動(dòng)的結(jié)晶,對(duì)其中的`錯(cuò)題進(jìn)行溫習(xí),這樣做有時(shí)候可以收到意想不到的效果,會(huì)有新的體會(huì)。其實(shí)整理好的錯(cuò)題集就相當(dāng)于是以前做過(guò)的大量習(xí)題中的精華薈萃(這要建立在學(xué)生認(rèn)真整理的基礎(chǔ)上),是最適合學(xué)生個(gè)人的學(xué)習(xí)資料,比任何一本參考書(shū)、習(xí)題集都有用,有價(jià)值。

  三、錯(cuò)題分享:

  在現(xiàn)行的學(xué)習(xí)體制下,學(xué)生之間的競(jìng)爭(zhēng)意識(shí)很強(qiáng),但是主動(dòng)交流分享意識(shí)非常薄弱。其實(shí)同學(xué)就是一個(gè)巨大的學(xué)習(xí)資源庫(kù),只要每個(gè)學(xué)生都愿意敞開(kāi)心扉,真誠(chéng)地交流,相互扶持,相互幫助和鼓勵(lì),學(xué)生就可以從同學(xué)身上學(xué)到很多東西。正所謂“你有一種思想,我有一種思想,交流之后我們就同時(shí)擁有了兩種思想”,學(xué)生之間的錯(cuò)題集也可以相互交流。這是因?yàn)槊總(gè)學(xué)生出錯(cuò)的原因各不相同,所以每個(gè)人建立的錯(cuò)題集也不同,通過(guò)相互交流可以從別人的錯(cuò)誤中汲取教訓(xùn),拓展自己的視野,得到啟發(fā),以警示自己不犯同樣錯(cuò)誤。不同的人從相同的題目中得到的是不同的體會(huì),通過(guò)交流大家就可以領(lǐng)略到知識(shí)的不同側(cè)面,從而對(duì)知識(shí)掌握得更加牢固。在交流的氛圍中,學(xué)生改變了學(xué)習(xí)方式,增強(qiáng)了學(xué)習(xí)數(shù)學(xué)的積極性。

  四、錯(cuò)題應(yīng)用:

  將錯(cuò)題收集在一起并改正,還不能完全說(shuō)明學(xué)生對(duì)這一知識(shí)點(diǎn)的漏洞就補(bǔ)好了。最好的狀況是對(duì)于每一個(gè)錯(cuò)題,學(xué)生自己還必須查找資料,找出與之相同或相關(guān)的題型,進(jìn)行練習(xí)解答。如果沒(méi)有困難,則說(shuō)明學(xué)生對(duì)這一知識(shí)點(diǎn)可能已經(jīng)掌握。此時(shí),學(xué)生可以嘗試著進(jìn)行更高難度的事情:錯(cuò)題改編。將題目中的條件和結(jié)論換一下,還成立嗎?把條件減弱或者把結(jié)論加強(qiáng),命題還成立嗎?或者嘗試著編一道類(lèi)似的題目,還能做嗎?經(jīng)歷了這么一個(gè)思維洗禮,學(xué)生對(duì)知識(shí)的理解會(huì)更深刻,對(duì)方法的把握會(huì)更透徹,不管條件怎么變,他們基本上都可以應(yīng)付自如了。一般情況下,學(xué)生在學(xué)校可能沒(méi)有這么充裕的時(shí)間來(lái)做這樣的事情,但是學(xué)生之間相互協(xié)助,每人找一個(gè)類(lèi)型的題目,或者每人提出一個(gè)想法,全班合起來(lái)就基本找全了所有的題型,改編了很多道類(lèi)似的題目。

  錯(cuò)題管理有助于學(xué)生的數(shù)學(xué)學(xué)習(xí)。但是,錯(cuò)題管理并不是學(xué)習(xí)的目的,而是幫助學(xué)生進(jìn)行有效學(xué)習(xí)的一種手段。制作錯(cuò)題集更不是任務(wù),不一定要做得精致、全面,它只是一種訓(xùn)練思維的載體。最關(guān)鍵的是,學(xué)生和老師不能輕易放過(guò)錯(cuò)題,徹底弄清楚錯(cuò)題所反映的問(wèn)題,學(xué)以致用。在反思學(xué)習(xí)的過(guò)程中完善自己的知識(shí)結(jié)構(gòu),提升解決問(wèn)題的能力,實(shí)現(xiàn)有效學(xué)習(xí)和有效教學(xué)的終極目標(biāo)。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  一、重要概念

  1、數(shù)的分類(lèi)及概念

  數(shù)系表:

  說(shuō)明:“分類(lèi)”的原則:1)相稱(chēng)(不重、不漏)

  2)有標(biāo)準(zhǔn)

  2、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱(chēng)。(表為:x≥0)

  常見(jiàn)的非負(fù)數(shù)有:

  性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。

  3、倒數(shù):①定義及表示法

 、谛再|(zhì):≠1/a(a≠±1);中,a≠0;a1時(shí),1/a1;D。積為1。

  4、相反數(shù):①定義及表示法

 、谛再|(zhì):≠0時(shí),a≠—a;與—a在數(shù)軸上的位置;C。和為0,商為—1。

  5、數(shù)軸:①定義(“三要素”)

  ②作用:A。直觀地比較實(shí)數(shù)的大;B。明確體現(xiàn)絕對(duì)值意義;C。建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

  6、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

  定義及表示:

  奇數(shù):2n—1

  偶數(shù):2n(n為自然數(shù))

  7、絕對(duì)值:①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的'絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。

 、讴│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。

【中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

中考數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)01-13

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-24

[實(shí)用]中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-24

【優(yōu)】中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-09

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【熱門(mén)】06-09

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(通用)06-09

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(熱)06-10

中考數(shù)學(xué)知識(shí)點(diǎn)03-15

中考數(shù)學(xué)必考知識(shí)點(diǎn)03-12

中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)優(yōu)秀05-08