精品国产一级毛片大全,毛片一级在线,毛片免费观看的视频在线,午夜毛片福利

我要投稿 投訴建議

中考數(shù)學知識點總結(jié)

時間:2024-06-09 15:03:56 中考 我要投稿

中考數(shù)學知識點總結(jié)優(yōu)選[15篇]

  總結(jié)就是把一個時間段取得的成績、存在的問題及得到的經(jīng)驗和教訓進行一次全面系統(tǒng)的總結(jié)的書面材料,它可以有效鍛煉我們的語言組織能力,是時候?qū)懸环菘偨Y(jié)了?偨Y(jié)怎么寫才是正確的呢?下面是小編精心整理的中考數(shù)學知識點總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

中考數(shù)學知識點總結(jié)優(yōu)選[15篇]

中考數(shù)學知識點總結(jié)1

  不等式與不等式組

  1.定義:

  用符號〉,=,〈號連接的式子叫不等式。

  2.性質(zhì):

  ①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

 、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。

 、鄄坏仁降.兩邊都乘以或除以同一個負數(shù),不等號方向相反。

  3.分類:

 、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦剑缓幸粋未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

 、谝辉淮尾坏仁浇M:

  a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

  b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

  4.考點:

 、俳庖辉淮尾坏仁(組)

  ②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實際問題

 、塾脭(shù)軸表示一元一次不等式(組)的解集

中考數(shù)學知識點總結(jié)2

  一、初中數(shù)學基本知識

  ㈠、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)

  ②分數(shù)→正分數(shù)/負分數(shù)

  數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:

  加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個有理數(shù)互為倒數(shù)。

  除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。②0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:AMAN=A(MN)

  (AM)N=AMN

  (A/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾検较喑,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的`積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜傅姆质较嗉訙p,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ郑癁橥帜傅姆质,再加減。

  分式方程:

  ①分母中含有未知數(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  20xx年中考數(shù)學基礎(chǔ)知識總結(jié)20xx年中考數(shù)學基礎(chǔ)知識總結(jié)

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

  ①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當?shù)?的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diata”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△<0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)

  2、不等式與不等式組

  不等式:

  ①用符號〉,=,〈號連接的式子叫不等式。

  ②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

 、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。

 、懿坏仁降膬蛇叾汲艘曰虺酝粋負數(shù),不等號方向相反。

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

 、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

 、矍蟛坏仁浇饧倪^程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

  一元一次不等式組:

 、訇P(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

  ②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

 、矍蟛坏仁浇M解集的過程,叫做解不等式組。

  一元一次不等式的符號方向:

  在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

  在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:A>B,AC>BC

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C

  在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)

  在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C

  如果不等式乘以0,那么不等號改為等號

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;

  二、函數(shù)

  變量:因變量,自變量。

  在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):①若兩個變量X,間的關(guān)系式可以表示成=XB(B為常數(shù),不等于0)的形式,則稱是X的一次函數(shù)。②當B=0時,稱是X的正比例函數(shù)。

  一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)=X的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當〈0,B〈O,則經(jīng)234象限;當〈0,B〉0時,則經(jīng)124象限;當〉0,B〈0時,則經(jīng)134象限;當〉0,B〉0時,則經(jīng)123象限。④當〉0時,的值隨X值的增大而增大,當X〈0時,的值隨X值的增大而減少。

  三、空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:①圖形是由點,線,面構(gòu)成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  20xx年中考數(shù)學基礎(chǔ)知識總結(jié)建造師考試_建筑工程類工程師考試網(wǎng)

  弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。②一條射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

中考數(shù)學知識點總結(jié)3

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的'數(shù)學式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點

 。1)解析法

  兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

 。3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

 。1)列表:列表給出自變量與函數(shù)的一些對應值。

 。2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點。

 。3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

中考數(shù)學知識點總結(jié)4

  第十一章:全等三角形復習

  一全等三角形

  1、什么是全等三角形?一個三角形經(jīng)過哪些變化可以得到它的全等形?能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。

  2、全等三角形有哪些性質(zhì)?

 。1):全等三角形的對應邊相等、對應角相等。

 。2):全等三角形的周長相等、面積相等。

 。3):全等三角形的對應邊上的對應中線、角平分線、高線分別相等。

  3、一般三角形全等的條件(包括直角三角形):(1)定義(重合)法;

  (2)SSS:三邊對應相等的兩個三角形全等;

  (3)SAS:兩邊和它們的夾角對應相等兩個三角形全等;

  (4)ASA:兩角和它們的夾邊對應相等的兩個三角形全等;

  (5)AAS:兩角和其中一角的對邊對應相等的兩個三角形全等。解題常用后面四種方法。直角三角形全等特有的條件:HL(斜邊和一條直角邊對應相等的兩個直角三角形全等)。

  4、證明兩個三角形全等的基本思路:

 。1)已知兩邊:a、找第三邊(SSS);b、找夾角(SAS);c、找是否有直角(HL)。

 。2)已知一邊一角:①已知一邊和他的鄰角:a、找這邊的另一個鄰角(ASA);b、找這個角的另一個邊(SAS);c、找這邊的對角(AAS)。

 、谝阎獌山牵篴、找兩角的夾邊(ASA);b、找夾邊外的任意邊(AAS)。

  二角平分線

  1、角平分線的性質(zhì):角的平分線上的點到角的.兩邊的距離相等。

  2、角平分線的判定:角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上。

  用法1:∵ QD⊥OA,QE⊥OB用法2:∵ QD⊥OA,QE⊥OB,QD=QE。

  ∴點Q在∠AOB的平分線上。 ∴點Q在∠AOB的平分線上

  ∴ QD=QE

  3、總結(jié)提高:學習全等三角形應注意以下幾個問題

 。1)要正確區(qū)分“對應邊”與“對邊”,“對應角”與“對角”的不同含義;

 。2)表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;

 。3)要記住“有三個角對應相等”或“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等;

 。4)時刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對頂角”。

  練習:

  練習1:如圖,D在AB上,E在AC上,AB=AC ,∠B=∠C,試問AD=AE嗎?

  2、如圖,OB⊥AB,OC⊥AC,垂足為B,C,OB=OC,AO平分∠BAC嗎?

  3、如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具呢?如果可以,帶那塊去合適?為什么?

  4、如圖,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,還需要補

  充的條件可以是

  5、已知AC=DB, ∠1=∠2.求證: ∠A=∠D

  6、如圖,已知,AB∥DE,AB=DE,AF=DC。請問圖中有那幾對全等三角形?請任選一對給予證明。

  7、如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?

  8、已知,△ABC和△ECD都是等邊三角形,且點B,C,D在一條直線上求證:BE=AD

  9、求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  10、將紙片△ABC沿DE折疊,點A落在點F處,已知∠1+∠2=100°,則∠A=度;

  11、如圖6,已知:∠A=90°,AB=BD,ED⊥BC于D.求證:AE=ED

  三軸對稱

  1、把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。

  2、把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應點,叫做對稱點。

  3、軸對稱的性質(zhì):①關(guān)于某直線對稱的兩個圖形是全等形。

 、谌绻麅蓚圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。

 、圯S對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

 、苋绻麅蓚圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

  4、線段的垂直平分線:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

  性質(zhì):線段垂直平分線上的點與這條線段的兩個端點的距離相等(純粹性)。

  逆定理:與一條線段兩個端點距離相等的點,在線段的垂直平分線上。(完備性)

  線段垂直平分線的集合定義:線段垂直平分線可以看作是與線段兩個端點距離相等的所有點的集合。

  5、用坐標表示軸對稱小結(jié):

  在平面直角坐標系中,關(guān)于x軸對稱的點橫坐標相等,縱坐標互為相反數(shù).關(guān)于y軸對稱的點橫坐標互為相反數(shù),縱坐標相等。

  利用軸對稱變換作圖:要在燃氣管道L上修建一個泵站,分別向A、B兩鎮(zhèn)供氣,泵站修在管道什么地方,可使所用的輸氣管道線最短?

  6、等腰三角形

  1.等腰三角形的性質(zhì)

 、.等腰三角形的兩個底角相等。(等邊對等角)

 、.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

  2、等腰三角形的判定:

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)。

  7、等邊三角形

 。1)等邊三角形的性質(zhì):等邊三角形的三個角都相等,并且每一個角都等于600 。

 。2)等邊三角形的判定:

 、偃齻角都相等的三角形是等邊三角形。②有一個角是60度的等腰三角形是等邊三角形。

 。3)在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

  練習1:在△ABC中,AB=AC時,(1)∵AD⊥BC

  ∴∠ ____= ∠_____;____=____

  (2) ∵AD是中線

  ∴____⊥____; ∠_____= ∠_____

  (3) ∵ AD是角平分線

  ∵____ ⊥____;_____=____

  2、如圖1,AD是△ABC的角平分線,BE⊥AD交AD的延長線于E,EF∥AC交AB于F,求證:AF=FB.

  3、某等腰三角形的兩條邊長分別為3 cm和6 cm,則它的周長為:

  4、等腰三角形的一個角為30°,則底角為___________.

  5、已知:如圖5,AB=AC,BD⊥AC.求證:∠DBC=1/2∠A。

  6、如圖6,在△ABC中,AB=AC,在AB上取一點E,在AC延長線上取一點F,使BE=CF,EF交BC于G,EM∥CF.求證:EG=FG.

  第十四章整式和因式分解

  一、冪的4個運算性質(zhì)

  1、同底數(shù)冪的乘法:am · an = am+n

  2、同底數(shù)冪的除法:am÷an =am-n;a0=1(a≠0)

  3、冪的乘方: (am )n = amn

  4、積的乘方: (ab)n = anbn

  如:(1)(-1)20xx+π0= (x-3)x+2=1,求x.

 。2)若10x=5,10y=4,求102x+3y-1的值.

  (3)計算:0.251000×(-2)20xx

  二、乘法公式

  1、平方差公式:(a+b)(a-b)=a2-b2

  2、完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

  3、三數(shù)和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc

  計算:(3x+4)(3x-4)-(2x+3)(3x-2)

  (1-x)(1+x)(1+x2)(1-x4)

  (x+4y-6z)(x-4y+6z)

  (x-2y+3z)2

  簡便計算:(1)98×102

  (2)2992

  (3) 20062-20xx×20xx

  活學活用:已知a+b=5,ab= -2,求(1)a2+b2(2)a-b

  三、因式分解

  因式分解方法:一提二套三看

  一提:提公因式提負號

  二套:套平方差、完全平方、十字相乘法

  三看:看是否分解完全。

  如:x5-16x -4a 2+4ab- b 2 m 2(m-2)-4m(2-m) 4a2- 16(a-2) 2

  a、多項式x2-4x+4、x2-4的公因式是

  b、已知x2-2mx+16是完全平方式則m為

  c、已知x2-8x+m是完全平方式,則m=

  d、已知x2-8x+m2是完全平方式,則m=

  e、如果(2a+2b+1)(2a+2b-1)=63,那么a+b=

  f、如果(a2 +b2 )(a2 +b2 -1)=20,那么a2 +b2 =_____

  簡便計算:(-2)20xx+(-2)20xx

  20xx+20052-20062

  3992+399

中考數(shù)學知識點總結(jié)5

  一、目標與要求

  1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應用一元二次方程概念解決一些簡單題目。

  2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據(jù)實際問題建立一元二次方程的數(shù)學模型的方法,應用熟練掌握以上知識解決問題。

  二、重點

  1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的`有關(guān)概念并用這些概念解決問題。

  2.判定一個數(shù)是否是方程的根;

  3.用配方法、公式法、因式分解法降次──解一元二次方程。

  4.運用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次──轉(zhuǎn)化的數(shù)學思想。

  5.利用實際問題建立一元二次方程的數(shù)學模型,并解決這個問題.

  三、難點

  1.一元二次方程配方法解題。

  2.通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念。

  3.用公式法解一元二次方程時的討論。

  4.通過根據(jù)平方根的意義解形如x2=n,知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。

  5.建立一元二次方程實際問題的數(shù)學模型,方程解與實際問題解的區(qū)別。

  6.由實際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實際問題的根。

  7.知識框架

  四、知識點、概念總結(jié)

  1.一元二次方程:方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。

  2.一元二次方程有四個特點:

  (1)含有一個未知數(shù);

  (2)且未知數(shù)次數(shù)最高次數(shù)是2;

  (3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程。

  (4)將方程化為一般形式:ax2+bx+c=0時,應滿足(a≠0)

  3. 一元二次方程的一般形式:一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0)。

  一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項。

中考數(shù)學知識點總結(jié)6

  把一個數(shù)寫做的形式,其中,n是整數(shù),這種記數(shù)法叫做科學記數(shù)法。

  (1)確定:是只有一位整數(shù)數(shù)位的數(shù).

  (2)確定n:當原數(shù)≥1時,等于原數(shù)的整數(shù)位數(shù)減1;;當原數(shù)<1時,是負整數(shù),它的.絕對值等于原數(shù)中左起第一個非零數(shù)字前零的個數(shù)(含整數(shù)位上的零)。

  例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.

  (3).近似值的精確度:一般地,一個近似數(shù),四舍五入到哪一位,就說這個近似數(shù)精確到哪一位

  (4)按精確度或有效數(shù)字取近似值,一定要與科學計數(shù)法有機結(jié)合起來.

中考數(shù)學知識點總結(jié)7

  1. 因式分把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

  3.公因式的確定:系數(shù)的最大公約數(shù)?相同因式的最低次冪.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式: a2-b2=(a+ b)(a- b);

  (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事項:

  (1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;

  (2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

  (3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;

  (4)因式分解的最后結(jié)果要求每一個因式的首項符號為正;

  (5)因式分解的最后結(jié)果要求加以整理;

  (6)因式分解的.最后結(jié)果要求相同因式寫成乘方的形式.

  6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數(shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項或補項.

  7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

中考數(shù)學知識點總結(jié)8

  (1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類: ① 整數(shù) ②分數(shù)

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的.數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù) 0和正整數(shù);a0 a是正數(shù);a0 a是負數(shù);

  a≥0 a是正數(shù)或0 a是非負數(shù);a≤ 0 ? a是負數(shù)或0 a是非正數(shù).

  有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;

  (2)正數(shù)永遠比0大,負數(shù)永遠比0小;

  (3)正數(shù)大于一切負數(shù);

  (4)兩個負數(shù)比大小,絕對值大的反而小;

  (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

  (6)大數(shù)-小數(shù) 0,小數(shù)-大數(shù) 0.

中考數(shù)學知識點總結(jié)9

  一、三角形的有關(guān)概念

  1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。

  三角形的特征:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩(wěn)定性。

  2.三角形中的三條重要線段:角平分線、中線、高

  (1)角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  (2)中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  (3)高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  說明:①三角形的角平分線、中線、高都是線段;②三角形的角平分線、中線都在三角形內(nèi)部且都交于一點;三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長線)相交于一點。

  二、等腰三角形的性質(zhì)和判定

  (1)性質(zhì)

  1.等腰三角形的兩個底角相等(簡寫成"等邊對等角")。

  2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡寫成"等腰三角形的三線合一")。

  3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。

  4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。

  5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。

  6.等腰三角形底邊上任意一點到兩腰距離之和等于一腰上的高(需用等面積法證明)。

  7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸,等邊三角形有三條對稱軸。

  (2)判定

  在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)。

  在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。

  三、直角三角形和勾股定理

  有一個角是直角的三角形是直角三角形,在直角三角形中,斜邊中線等于斜邊的一半;30度所對的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。

  勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

  勾股數(shù)一定是正整數(shù),常見勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。

  方法總結(jié):

  當不明確直角三角形的斜邊長,應把已知最長邊分為直角邊和斜邊兩種情況討論。無理數(shù)在數(shù)軸上的表示和線段長表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,勾股定理設(shè)未知量)

  如果三角形的三邊長a,b,c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。勾股定理的逆定理,常用于判斷三角形的形狀,先確定最大邊(可以設(shè)為c)。

  四、初中三角形中線定理

  中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長度關(guān)系。

  定理內(nèi)容:三角形一條中線兩側(cè)所對邊平方和等于底邊的一半平方與該邊中線平方和的2倍。

  中線的定義:任何三角形都有三條中線,而且這三條中線都在三角形的內(nèi)部,并交于一點。

  由定義可知,三角形的中線是一條線段。

  由于三角形有三條邊,所以一個三角形有三條中線。

  且三條中線交于一點。這點稱為三角形的重心。

  每條三角形中線分得的兩個三角形面積相等。

  五、直角三角形的判定

  判定1:有一個角為90°的三角形是直角三角形。

  判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的.逆定理)。

  判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,那么這個三角形是以這條長邊為斜邊的直角三角形。

  判定4:兩個銳角互余的三角形是直角三角形。

  判定5:證明直角三角形全等時可以利用HL,兩個三角形的斜邊長對應相等,以及一個直角邊對應相等,則兩直角三角形全等。[定理:斜邊和一條直角對應相等的兩個直角三角形全等。簡稱為HL]

  判定6:若兩直線相交且它們的斜率之積互為負倒數(shù),則這兩直線垂直。

  判定7:在一個三角形中若它一邊上的中線等于這條中線所在邊的一半,那么這個三角形為直角三角形。

  六、勾股定理的逆定理

  如果三角形三邊長a,b,c滿足,那么這個三角形是直角三角形,其中c為斜邊。

 、俟垂啥ɡ淼哪娑ɡ硎桥卸ㄒ粋三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以a,b,c為三邊的三角形是直角三角形;若時,以a,b,c為三邊的三角形是鈍角三角形;若時,以a,b,c為三邊的三角形是銳角三角形;

 、诙ɡ碇衋,b,c及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊.

 、酃垂啥ɡ淼哪娑ɡ碓谟脝栴}描述時,不能說成:當斜邊的平方等于兩條直角邊的平方和時,這個三角形是直角三角形。

  七、三角形定理公式

  三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊。

  三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度。

  三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和。

  三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

  三角形的三條角平分線交于一點(內(nèi)心)。

  三角形的三邊的垂直平分線交于一點(外心)。

  三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半。

中考數(shù)學知識點總結(jié)10

  1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式;數(shù)字或字母的乘積叫單項式(單獨的一個數(shù)字或字母也是單項式)。

  2.系數(shù):單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。所有字母的指數(shù)之和叫做這個單項式的次數(shù)。任何一個非零數(shù)的零次方等于1.

  3.多項式:幾個單項式的和叫多項式。

  4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。

  5.常數(shù)項:不含字母的項叫做常數(shù)項。

  6.多項式的排列

  (1)把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

  (2)把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

  7.多項式的排列時注意:

  (1)由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。

  (2)有兩個或兩個以上字母的多項式,排列時,要注意:

  a.先確認按照哪個字母的指數(shù)來排列。

  b.確定按這個字母向里排列,還是向外排列。

  (3)整式:

  單項式和多項式統(tǒng)稱為整式。

  8.多項式的加法:

  多項式的加法,是指多項式的同類項的系數(shù)相加(即合并同類項)。

  9.同類項:所含字母相同,并且相同字母的次數(shù)也分別相同的項叫做同類項。

  10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。

  11.掌握同類項的概念時注意:

  (1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:

  ①所含字母相同。

 、谙嗤帜傅拇螖(shù)也相同。

  (2)同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

  (3)所有常數(shù)項都是同類項。

  12.合并同類項步驟:

  (1)準確的找出同類項;

  (2)逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變;

  (3)寫出合并后的結(jié)果。

  13.在掌握合并同類項時注意:

  (1)如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0;

  (2)不要漏掉不能合并的項;

  (3)只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。

  14.整式的拓展

  整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的'結(jié)構(gòu)特征以及公式中的字母的廣泛含義,學生不易掌握.因此,乘法公式的靈活運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要根據(jù)添括號(或去括號)的法則進行。在整式的乘除中,單項式的乘除是關(guān)鍵,這是因為,一般多項式的乘除都要“轉(zhuǎn)化”為單項式的乘除。

  整式四則運算的主要題型有:

  (1)單項式的四則運算

  此類題目多以選擇題和應用題的形式出現(xiàn),其特點是考查單項式的四則運算。

  (2)單項式與多項式的運算

  

中考數(shù)學知識點總結(jié)11

  一、重要概念

  1、數(shù)的分類及概念

  數(shù)系表:

  說明:“分類”的原則:1)相稱(不重、不漏)

  2)有標準

  2、非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

  常見的非負數(shù)有:

  性質(zhì):若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。

  3、倒數(shù):①定義及表示法

  ②性質(zhì):≠1/a(a≠±1);中,a≠0;a1時,1/a1;D。積為1。

  4、相反數(shù):①定義及表示法

 、谛再|(zhì):≠0時,a≠—a;與—a在數(shù)軸上的`位置;C。和為0,商為—1。

  5、數(shù)軸:①定義(“三要素”)

  ②作用:A。直觀地比較實數(shù)的大;B。明確體現(xiàn)絕對值意義;C。建立點與實數(shù)的一一對應關(guān)系。

  6、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

  定義及表示:

  奇數(shù):2n—1

  偶數(shù):2n(n為自然數(shù))

  7、絕對值:①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。

 、讴│≥0,符號“││”是“非負數(shù)”的標志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。

中考數(shù)學知識點總結(jié)12

  1、方程:含有未知數(shù)的等式叫做方程。

  2、方程的解:使方程左右兩邊的值相等的未知數(shù)的值叫方程的解,含有一個未知數(shù)的方程的解也叫做方程的根。

  3、解方程:求方程的解或方判斷方程無解的過程叫做解方程。

  4、方程的增根:在方程變形時,產(chǎn)生的不適合原方程的根叫做原方程的增根。

  二、一元方程

  1、一元一次方程

  (1)一元一次方程的標準形式:ax+b=0(其中x是未知數(shù),a、b是已知數(shù),a≠0)

 。2)一玩一次方程的最簡形式:ax=b(其中x是未知數(shù),a、b是已知數(shù),a≠0)

 。3)解一元一次方程的一般步驟:去分母、去括號、移項、合并同類項和系數(shù)化為1。

 。4)一元一次方程有唯一的一個解。

  2、一元二次方程

 。1)一元二次方程的一般形式:(其中x是未知數(shù),a、b、c是已知數(shù),a≠0)

 。2)一元二次方程的解法:直接開平方法、配方法、公式法、因式分解法

  (3)一元二次方程解法的選擇順序是:先特殊后一般,如果沒有要求,一般不用配方法。

  (4)一元二次方程的根的'判別式:

  當Δ>0時方程有兩個不相等的實數(shù)根;

  當Δ=0時方程有兩個相等的實數(shù)根;

  當Δ< 0時方程沒有實數(shù)根,無解;

  當Δ≥0時方程有兩個實數(shù)根

  (5)一元二次方程根與系數(shù)的關(guān)系:

  若是一元二次方程的兩個根,那么:,(6)以兩個數(shù)為根的一元二次方程(二次項系數(shù)為1)是:

  三、分式方程

 。1)定義:分母中含有未知數(shù)的方程叫做分式方程。

 。2)分式方程的解法:

  一般解法:去分母法,方程兩邊都乘以最簡公分母。

  特殊方法:換元法。

  (3)檢驗方法:一般把求得的未知數(shù)的值代入最簡公分母,使最簡公分母不為0的就是原方程的根;使得最簡公分母為0的就是原方程的增根,增根必須舍去,也可以把求得的未知數(shù)的值代入原方程檢驗。

  四、方程組

  1、方程組的解:方程組中各方程的公共解叫做方程組的解。

  2、解方程組:求方程組的解或判斷方程組無解的過程叫做解方程組

  3、一次方程組:

 。1)二元一次方程組:

  一般形式:(不全為0)

  解法:代入消遠法和加減消元法

  解的個數(shù):有唯一的解,或無解,當兩個方程相同時有無數(shù)的解。

 。2)三元一次方程組:

  解法:代入消元法和加減消元法

  4、二元二次方程組:

 。1)定義:由一個二元一次方程和一個二元二次方程組成的方程組以及由兩個二元二次方程組成的方程組叫做二元二次方程組。

  (2)解法:消元,轉(zhuǎn)化為解一元二次方程,或者降次,轉(zhuǎn)化為二元一次方程組。

中考數(shù)學知識點總結(jié)13

  1.如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學基礎(chǔ)知識,“兵力”就是數(shù)學基本方法,而調(diào)動數(shù)學基礎(chǔ)知識、運用數(shù)學思想方法的數(shù)學解題思想則正是“兵法”。

  2.數(shù)學家存在的主要理由就是解決問題。因此,數(shù)學的真正的組成部分是問題和解答!皢栴}是數(shù)學的心臟”。

  3.問題反映了現(xiàn)有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。問題就是矛盾。對于學生而言,問題有三個特征:

 。1)接受性:學生愿意解決并且具有解決它的知識基礎(chǔ)和能力基礎(chǔ)。

 。2)障礙性:學生不能直接看出它的解法和答案,而必須經(jīng)過思考才能解決。

 。3)探究性:學生不能按照現(xiàn)成的的套路去解,需要進行探索,尋找新的處理方法。

  4.練習型的問題具有教學性,它的結(jié)論為數(shù)學家或教師所已知,其之成為問題僅相對于教學或?qū)W生而言,包括一個待計算的答案、一個待證明的結(jié)論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。

  5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:

 。1)問題解決是心理活動。面臨新情境、新課題,發(fā)現(xiàn)它與主客觀需要的矛盾而自己卻沒有現(xiàn)成對策時,所引起的尋求處理辦法的一種活動。

 。2)問題解決是一個探究過程。把“問題解決”定義為“將先前已獲得的知識用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個發(fā)現(xiàn)的過程、探索的過程、創(chuàng)新的過程。

 。3)問題解決是一個學習目的!皩W習數(shù)學的主要目的在于問題解決”。因而,學習怎樣解決問題就成為學習數(shù)學的根本原因。此時,問題解決就獨立于特殊的問題,獨立于一般過程或方法,也獨立于數(shù)學的具體內(nèi)容。

 。4)問題解決是一種生存能力。重視問題解決能力的培養(yǎng)、發(fā)展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界里,學習生存的本領(lǐng)。

  6.解題研究存在一些誤區(qū),首先一個表現(xiàn)是,用現(xiàn)成的例子說明現(xiàn)成的觀點,或用現(xiàn)成的觀點解釋現(xiàn)成的例子。其次一個表現(xiàn)是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或?qū)嵸|(zhì)性的突破。第三個表現(xiàn)是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區(qū)里,“解題而不立法、作答而不立論”。

  7.人的思維依賴于必要的`知識和經(jīng)驗,數(shù)學知識正是數(shù)學解題思維活動的出發(fā)點與憑借。豐富的知識并加以優(yōu)化的結(jié)構(gòu)能為題意的本質(zhì)理解與思路的迅速尋找創(chuàng)造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。

  8.熟練掌握數(shù)學基礎(chǔ)知識的體系。對于中學數(shù)學解題來說,應如數(shù)學家珍說出教材的概念系統(tǒng)、定理系統(tǒng)、符號系統(tǒng)。還應掌握中學數(shù)學競賽涉及的基礎(chǔ)理論。深刻理解數(shù)學概念、準確掌握數(shù)學定理、公式和法則。熟悉基本規(guī)則和常用的方法,不斷積累數(shù)學技巧。

  9.數(shù)學的本質(zhì)活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現(xiàn)“相容”和“不容”的兩種可能。出現(xiàn)“相容”時,產(chǎn)生新結(jié)果,且被原概念吸收,并發(fā)展成新概念;當出現(xiàn)“不容”時,則產(chǎn)生了所謂的問題。這時,思維出現(xiàn)迂回,甚至暫時退回原地,將原概念擴大或?qū)⒃壿嬜兪剑钡叫滤季S與事物相容為止。至此,也產(chǎn)生新的結(jié)果,也被原思維吸收。這就是一個思維活動的全過程。

  10.解題能力,表現(xiàn)于發(fā)現(xiàn)問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數(shù)學能力(運算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:

  (1)掌握解題的科學程序;

 。2)掌握數(shù)學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;

 。3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調(diào)動精明的解題技巧;

  (4)具有敏銳的直覺。應該明白,我們的數(shù)學解題活動是在縱橫交錯的數(shù)學關(guān)系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,并非對每一個數(shù)學細節(jié)都洞察無遺,并非總能借助于“三段論”的橋梁,而是在短時間內(nèi)朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數(shù)學對象的本質(zhì)領(lǐng)悟:

  11.解題具有實踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學會”。

  12.所謂解題經(jīng)驗,就是某些數(shù)學知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經(jīng)驗所獲得的有序組合,就好像建筑上的預制構(gòu)件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。

  13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學生解題是一種意志教育。當學生求解那些對他來說并不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現(xiàn)后如何全力以赴,直撲問題的核心或主干;當一旦突破關(guān)卡,如何去占領(lǐng)問題的至高點,并冷靜地府視全局,從而得到問題的完善解決。如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那么他的數(shù)學解題訓練就在最重要的地方失敗了。

  14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產(chǎn)生誤導。這樣的教師越高明,學生越自卑。

中考數(shù)學知識點總結(jié)14

  數(shù)學是研究數(shù)量結(jié)構(gòu)、變化、以及空間模型等概念的科學。它是物理、化學等學科的基礎(chǔ),而且與我們的生活息息相關(guān)。所以說,學好數(shù)學對于我們每個同學來說都是非常重要的。下面我向大家介紹一下初中數(shù)學的學習方法與技巧:

  一、平時的數(shù)學學習:

  1、課前認真預習。預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十。帶著預習中不明白的問題去聽老師講課,來解答這類的問題。預習還可以使聽課的整體效率提高。具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續(xù)15-20分鐘。在時間允許的情況下,還可以將練習冊做完。

  2、讓數(shù)學課學與練結(jié)合。在數(shù)學課上,光聽是沒用的。當老師讓同學去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節(jié)問題,否則“千里之堤,毀于蟻穴”。

  3、課后及時復習。寫完作業(yè)后對當天老師講的內(nèi)容進行梳理,可以適當?shù)刈觯玻捣昼娮笥业恼n外題?梢愿鶕(jù)自己的需要選擇適合自己的課外書。其課外題內(nèi)容大概就是今天上的課。

  4、單元測驗是為了檢測近期的學習情況。其實分數(shù)代表的'是你的過去,關(guān)鍵的是對于每次考試的總結(jié)和吸取教訓,是為了讓你在期中、期末考得更好。老師經(jīng)常會在沒通知的情況下進行考試,所以要及時做到“課后復習”。

  二、期中期末數(shù)學復習:

  要將平時的單元檢測卷訂成冊,并且將錯題再做一遍。如果整張試卷考得都不好,那么可以復印將試卷重做一遍。除試卷外,還可以將作業(yè)上的錯題、難題、易錯題重做一遍。另外,自己還可以做2——3張期末模擬卷。

  三、數(shù)學考試技巧:

  如果想得高分,在選擇、填空、計算題上是不能丟分的。在考數(shù)學的時候思想不能開小差,而且遇到難題時不能想“沒考好怎么辦啊”等內(nèi)容。在通常情況下,期末考試的難題都是不知道怎么做,但有可能突然明白的那種。遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析,如這次考試有兩個空白的鐘,還有去年七年級期末的幾題填空。這些條件都對你的解題有很大幫助。在期中、期末考試中有充足的時間,將自己的速度壓下來,不是越快越好,爭取一次做成功。大概留35分鐘的時間檢查。

  最終提醒大家:多做題有一定作用,但上課聽講、認真答題及提高準確率、總結(jié)經(jīng)驗才是最重要的。還要將所學的知識用到生活中去,做到學以致用。當你運用數(shù)學知識解決了生活中實際問題的時候,你就會感受到學習數(shù)學的快樂。

中考數(shù)學知識點總結(jié)15

  有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分數(shù)統(tǒng)稱有理數(shù).

  注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);

  (2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的.數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);

  a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).

【中考數(shù)學知識點總結(jié)】相關(guān)文章:

中考數(shù)學圓知識點總結(jié)01-13

中考數(shù)學知識點總結(jié)05-24

[實用]中考數(shù)學知識點總結(jié)05-24

【優(yōu)】中考數(shù)學知識點總結(jié)06-09

中考數(shù)學知識點03-15

中考數(shù)學必考知識點03-12

中考數(shù)學知識點歸納總結(jié)優(yōu)秀05-08

2018中考數(shù)學知識點總結(jié)12-31

中考數(shù)學知識點總結(jié)15篇【精】06-07

中考數(shù)學知識點總結(jié)(通用15篇)05-24