- 相關推薦
中考數(shù)學公式大全
【兩角和公式】
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
【三角和的三角函數(shù)】
sin(α+β+γ)=sinα?cosβ?cosγ+cosα?sinβ?cosγ+cosα?cosβ?sinγ-sinα?sinβ?sinγ
cos(α+β+γ)=cosα?cosβ?cosγ-cosα?sinβ?sinγ-sinα?cosβ?sinγ-sinα?sinβ?cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα?tanβ?tanγ)/(1-tanα?tanβ-tanβ?tanγ-tanγ?tanα)
【積化和差】
sin(a)sin(b)=-1/2__[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2__[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2__[sin(a+b)+sin(a-b)]
cos(a)sin(b)=1/2__[sin(a+b)-sin(a-b)]
因式分解公式
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式: (a+b)平方=a平方+2ab+b平方
完全平方差公式: (a-b)平方=a平方-2ab+b平方
兩根式: ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]兩根式
立方和公式: a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3.
初三數(shù)學中考排列組合公式大全
1.排列及計算公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(規(guī)定0!=1).
2.組合及計算公式
從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號
c(n,m) 表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!__m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為
n!/(n1!__n2!__...__nk!).
k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標) =1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m
等比公式求和的公式
(1)等比數(shù)列:a(n+1)/an=q(n∈N)。
(2)通項公式:an=a1×q^(n-1);
推廣式:an=am×q^(n-m);
、偃鬽、n、p、q∈N,且m+n=p+q,則am__an=ap__aq;
②在等比數(shù)列中,依次每k項之和仍成等比數(shù)列.
、廴鬽、n、q∈N,且m+n=2q,則am__an=aq^2
(5)"G是a、b的等比中項""G^2=ab(G≠0)".
(6)在等比數(shù)列中,首項a1與公比q都不為零.
【中考數(shù)學公式】相關文章:
如何用數(shù)學公式表白02-18
中考寄語_中考寄語09-17
中考勵志中考加油說說11-14
中考輔導:中考語文記憶方法02-20
中考的誓詞05-27
中考的句子11-20
中考的賀詞05-24
中考的語錄01-26
中考總結(jié)06-26