精品国产一级毛片大全,毛片一级在线,毛片免费观看的视频在线,午夜毛片福利

我要投稿 投訴建議

八年級數(shù)學(xué)《三角形邊的關(guān)系》教學(xué)設(shè)計(jì)

時(shí)間:2021-03-12 18:05:48 教學(xué)設(shè)計(jì) 我要投稿

八年級數(shù)學(xué)《三角形三條邊的關(guān)系》教學(xué)設(shè)計(jì)

  1、教材分析

八年級數(shù)學(xué)《三角形三條邊的關(guān)系》教學(xué)設(shè)計(jì)

  (1)知識結(jié)構(gòu)

  (2)重點(diǎn)、難點(diǎn)分析

  本節(jié)內(nèi)容的重點(diǎn)是三角形三邊關(guān)系定理及推論.這個(gè)定理與推論不僅給出了三角形的三邊之間的大小關(guān)系,更重要的是提供了判斷三條線段能否組成三角形的標(biāo)準(zhǔn);熟練靈活地運(yùn)用三角形的兩邊之和大于第三邊,是數(shù)學(xué)嚴(yán)謹(jǐn)性的一個(gè)體現(xiàn);同時(shí)也有助于提高學(xué)生全面思考數(shù)學(xué)問題的能力;它還將在以后的學(xué)習(xí)中起著重要作用.

  本節(jié)內(nèi)容的難點(diǎn)一是三角形按邊分類,很多學(xué)生常常把等腰三角形與等邊三角形看成獨(dú)立的兩類,而在解題中產(chǎn)生錯(cuò)誤.二是利用三角形三邊之間的關(guān)系解題,在學(xué)習(xí)和應(yīng)用這個(gè)定理時(shí),“兩邊之和大于第三邊”指的是“任何兩邊的和”都“大于第三邊”而學(xué)生的錯(cuò)誤就在于以偏概全;分類討論在解題中也是學(xué)生感到困難的一個(gè)地方.

  2、教法建議

  沒有學(xué)生參與的教學(xué)是不成功的教學(xué),教師為了充分調(diào)動(dòng)主體參與,必須在為學(xué)生提供必要的背景知識的前提下,與學(xué)生一道探索定理在結(jié)構(gòu)上、應(yīng)用上留給我們的啟示.具體說明如下:

  (1)強(qiáng)化能力

  新課引入,先讓學(xué)生閱讀教材第一部分,然后通過回答教師設(shè)計(jì)的幾個(gè)問題,使學(xué)生明確對三角形按邊分類,做到不重不漏,其中等腰三角形包括等邊三角形,反過來等邊三角形是等腰三角形的一種特例.

  通過閱讀,使學(xué)生初步認(rèn)識數(shù)學(xué)概念的含義,發(fā)現(xiàn)疑難;理解領(lǐng)會(huì)數(shù)學(xué)語言(文字語言、符號語言、圖形語言),促進(jìn)數(shù)學(xué)語言內(nèi)化,從而提高學(xué)生的數(shù)學(xué)語言水平、自學(xué)能力及交流能力

  (2)主動(dòng)獲取

  在得出三角形三條邊關(guān)系定理過程中,針對基礎(chǔ)比較好的學(xué)生,讓學(xué)生考慮回憶第

  一冊第一章中學(xué)過的這條公理并給出證明,在這個(gè)基礎(chǔ)上,讓學(xué)生把定理的內(nèi)容敘述出來.(3)激蕩思維

  由定理獲得了:判斷三條線段構(gòu)成一個(gè)三角形的一種方法,除了這一種方法外,是否還有其它的判斷方法呢?從而激蕩起學(xué)生思維浪花:方法是什么呢?學(xué)生最初可能很快得到“推論”,此時(shí)瓜熟蒂落,順理成章地引出教材中的推論.在此基礎(chǔ)上,讓學(xué)生通過討論,簡化上述兩種方法,由此得到下面兩種方法.這里,學(xué)生若感到困難,教師可適當(dāng)做提示.方法3:已知線段 , ( ),若第三條線段c滿足 - ,則線段 , ,c可組成一個(gè)三角形.方法4:已知線段 , ,c且 ,若 + c則線段 , ,c可組成一個(gè)三角形.教學(xué)中采用這種教學(xué)方法可培養(yǎng)學(xué)生分析問題探索問題的能力,提高學(xué)生對數(shù)學(xué)知識結(jié)構(gòu)完整性的認(rèn)識.

  (4)加深理解

  進(jìn)行必要的例題講解和適當(dāng)?shù)慕忸}練習(xí),以達(dá)到熟練地運(yùn)用定理及推論.從過程中讓學(xué)生體味到數(shù)學(xué)造化之神奇.也可適當(dāng)指出,此定理及推論不僅提供了判定三條線段是否構(gòu)成三角形的根據(jù),也為今后解決字母取值范圍問題提供了有利的依據(jù).

  整個(gè)教學(xué)過程,是學(xué)生主動(dòng)參與,教師及時(shí)點(diǎn)撥,學(xué)生積極探索的過程,教學(xué)過程跌宕起伏,問題逐步深化,學(xué)生思維逐步擴(kuò)展,使學(xué)生在愉快、主動(dòng)中得到發(fā)展.

  教學(xué)目標(biāo):

  (1)掌握三角形三邊關(guān)系定理及其推論,會(huì)根據(jù)三條線段的長度判斷他們能否構(gòu)成三角形;

  (2)弄清三角形按邊的相等關(guān)系的分類;

  (3)通過三角形的分類學(xué)習(xí),使學(xué)生知道分類的基本思想,提高學(xué)生歸納概括的能力;

  (4)通過三角形三邊關(guān)系定理的學(xué)習(xí),培養(yǎng)學(xué)生轉(zhuǎn)化的能力;

  (5)通過等邊三角形是等腰三角形的'特例,滲透一般與特殊的辯證關(guān)系.

  教學(xué)重點(diǎn):三角形三邊關(guān)系定理及推論

  教學(xué)難點(diǎn):三角形按邊分類及利用三角形三邊關(guān)系解題

  教學(xué)用具:直尺、微機(jī)

  教學(xué)方法:談話、探究式

  教學(xué)過程:

  1、閱讀新課,回答問題

  先讓學(xué)生閱讀教材的第一部分,然后回答下列問題:

  (1)這一部分教材中的數(shù)學(xué)概念有哪些?(指出來并給予解釋)

  (2)等腰三角形與等邊三角形有什么關(guān)系?

  估計(jì)有的學(xué)生可能把等腰三角形和等邊三角形看成獨(dú)立的兩類.

  (3)寫出三角形按邊的相等關(guān)系分類的情況.

  教師最后板書給出.

  (要求學(xué)生之間可互相補(bǔ)充,從一開始就鼓勵(lì)雙邊交流與多邊交流)

  2、發(fā)現(xiàn)并推導(dǎo)出三邊關(guān)系定理

  問題1:用長度為4cm、 10cm 、16cm的線繩(課前準(zhǔn)備好的)能否搭建一個(gè)三角形?(讓學(xué)生動(dòng)手操作)

  問題2:你能解釋上述結(jié)果的原因嗎?

  問題3:任何三條線段都能組成一個(gè)三角形嗎?滿足什么條件時(shí),三條線段可組成一個(gè)三角形?

  定理:三角形兩邊的和大于第三邊

  (發(fā)現(xiàn)過程采用小步子原則,讓學(xué)生在不知不覺中發(fā)現(xiàn)數(shù)學(xué)中的真理)

  3、導(dǎo)出三邊關(guān)系定理的推論及其它兩種方法

  由前面得到了判斷所給三條線段能否組成三角形的一個(gè)依據(jù).那么是否還有其它方法呢?請同學(xué)們在定理的基礎(chǔ)上來找:

  估計(jì)學(xué)生很容易得到推論,讓學(xué)生用自己的語言敘述,教師稍加整理后給出規(guī)范敘述.

  推論:三角形兩邊的差小于第三邊

  (給每一個(gè)學(xué)生表現(xiàn)個(gè)人數(shù)學(xué)語言表達(dá)才能的機(jī)會(huì))

  能否簡化上面定理及推論?從而得到如下兩種判定方法:

  (1)、已知線段 , ( ),若第三條線段c滿足 - ,則線段 , ,c可組成一個(gè)三角形.(2)、已知線段 , ,c且 ,若 + c則線段 , ,c可組成一個(gè)三角形.

  4、三角形三邊關(guān)系定理及推論的應(yīng)用

  例1 判斷題:(出示投影)

  (1)等邊三角形是等腰三角形

  (2)三角形可分為不等邊三角形、等腰三角形和等邊三角形

  (3)已知三線段 滿足 ,那么 為邊可構(gòu)成三角形

  (4)等腰三角形的腰比底長

  (本例主要考察學(xué)生對概念、定理及推論的理解程度,不要求做在本上,只需口答即可)

  (本例要求學(xué)生說出解題思路,教師點(diǎn)到為止)

  例3 一個(gè)等腰三角形的周長為18 .

  (1) 已知腰長是底邊長的2倍,求各邊長.

  (2) 其中一邊長4 ,求其他兩邊長.

  這是一道有課堂練習(xí)性質(zhì)的例題,允許學(xué)生有3分鐘左右的獨(dú)立思考,允許想出來的同學(xué)表達(dá)自己的想法,其它同學(xué)補(bǔ)充完善.

  (數(shù)學(xué)教師的課堂教學(xué)應(yīng)該是敢于放手,盡可能多地給學(xué)生創(chuàng)造展示自己的思維空間和時(shí)間)

  例4 草原上有4口油井,位于四邊形ABCD的4個(gè)頂點(diǎn),

  如圖1現(xiàn)在要建一個(gè)維修站H,試問H建在何處,

  才能使它到4口油井的距離HA+HB+HC+HD為最小,

  說明理由.

  本例有一定的難度,給出的方法是解決此類型問題常見的極為簡捷的方法,略微構(gòu)造就可以使用三角形三邊關(guān)系定理得出答案.

  5、小結(jié)

  本節(jié)課我們學(xué)習(xí)了三角形三邊關(guān)系的定理和推論,還知道了定理和推論的一系列靈活運(yùn)用:

  (1)判斷三條已知線段能否組成三角形

  采用一種較為簡便的判法:若最短邊與較長邊的和大于最長邊,則可構(gòu)成三角形,否則不能.

  (2)確定三角形第三邊的取值范圍

  兩邊之差第三邊兩邊之和

  若時(shí)間寬裕,讓學(xué)生經(jīng)討論后自由表述,其他同學(xué)補(bǔ)充,自己將知識系統(tǒng)化,以自己的方式進(jìn)行建構(gòu).

  6、布置作業(yè)

  a. 書面作業(yè)P41#8、9

  b. 思考題:1、在四邊形ABCD中,AC與BD相交于P,求證:

  (AB+BC+CD+AD)

【八年級數(shù)學(xué)《三角形三條邊的關(guān)系》教學(xué)設(shè)計(jì)】相關(guān)文章:

小學(xué)數(shù)學(xué)《三角形的特性》教學(xué)設(shè)計(jì)06-26

《三角形三邊關(guān)系》教學(xué)設(shè)計(jì)6篇04-28

數(shù)學(xué)教學(xué)設(shè)計(jì)12-27

初中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計(jì)04-21

平行四邊形的面積的教學(xué)設(shè)計(jì)03-07

平行四邊形的面積教學(xué)設(shè)計(jì)模板05-19

《三角形內(nèi)角和》教學(xué)設(shè)計(jì)(通用6篇)07-20

小學(xué)數(shù)學(xué)教學(xué)設(shè)計(jì):《找規(guī)律》04-06

數(shù)學(xué)課堂教學(xué)設(shè)計(jì)08-24

三角形的面積優(yōu)秀教學(xué)設(shè)計(jì)范文(通用6篇)05-11