二次根式乘法教學(xué)設(shè)計(jì)
兩個(gè)含有二次根式的代數(shù)式相乘,如果他們的積不含有二次根式,那么這兩個(gè)代數(shù)式叫做互為有理化因式。
二次根式 教學(xué)設(shè)計(jì) 教案
教學(xué)準(zhǔn)備
1.教學(xué)目標(biāo)
。1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性.
。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開方數(shù)字母的取值范圍. 2.教學(xué)重點(diǎn)/難點(diǎn)
理解二次根式的雙重非負(fù)性.
3.教學(xué)用具
4.標(biāo)簽
教學(xué)過程
1.創(chuàng)設(shè)情境,提出問題
問題1你能用帶有根號(hào)的的式子填空嗎?
。1)面積為3 的正方形的邊長(zhǎng)為_______,面積為S 的正方形的邊長(zhǎng)為_______.
。2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2 倍,面積為130m?,則它的寬為______m.
。3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.
師生活動(dòng):學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià).
【設(shè)計(jì)意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性.
問題2 上面得到的式子
分別表示什么意義?它們有什么共同特征?
師生活動(dòng):教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.
【設(shè)計(jì)意圖】為概括二次根式的`概念作鋪墊.
2.抽象概括,形成概念
問題3 你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?
師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如
【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.
追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?
師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.
【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開方數(shù)必須是非負(fù)數(shù)的理解. 3.辨析概念,應(yīng)用鞏固
問題4你能比較與0的大小嗎?
4.綜合運(yùn)用,鞏固提高
練習(xí)1 完成教科書第3頁的練習(xí).
練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時(shí),下列各式有意義
課堂小結(jié)
教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問題.
(1)本節(jié)課你學(xué)到了哪一類新的式子?
。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?
。3)二次根式與算術(shù)平方根有什么關(guān)系?
課后習(xí)題
【二次根式乘法教學(xué)設(shè)計(jì)】相關(guān)文章:
小數(shù)乘法教學(xué)設(shè)計(jì)03-02
《小數(shù)乘法》教學(xué)設(shè)計(jì)03-01
《乘法估算》的教學(xué)設(shè)計(jì)03-31
分?jǐn)?shù)乘法教學(xué)設(shè)計(jì)12篇04-11
乘法的初步認(rèn)識(shí)教學(xué)設(shè)計(jì)11-29
認(rèn)識(shí)乘法教學(xué)設(shè)計(jì)15篇04-14