精品国产一级毛片大全,毛片一级在线,毛片免费观看的视频在线,午夜毛片福利

我要投稿 投訴建議

三角函數(shù)公式高中

時間:2020-12-29 19:27:24 培訓(xùn)充電 我要投稿

三角函數(shù)公式大全高中

  三角函數(shù)看似很多,很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律就會發(fā)現(xiàn)三角函數(shù)各個公式之間有強大的聯(lián)系。而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在。

  同角三角函數(shù)的基本關(guān)系

  倒數(shù)關(guān)系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的關(guān)系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方關(guān)系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)

  平常針對不同條件的常用的兩個公式

  sin² α+cos² α=1 tan α *cot α=1

  一個特殊公式

  (sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 證明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)

  銳角三角函數(shù)公式

  正弦: sin α=∠α的對邊/∠α 的斜邊 余弦:cos α=∠α的鄰邊/∠α的斜邊 正切:tan α=∠α的對邊/∠α的鄰邊 余切:cot α=∠α的鄰邊/∠α的`對邊

  二倍角公式

  正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推導(dǎo) sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)^2] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

  n倍角公式

  sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n). 其中R=2^(n-1) 證明:當sin(na)=0時,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin【(n-1)π/n】 這說明sin(na)=0與{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】=0是同解方程. 所以sin(na)與{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】成正比. 而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以 {sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1π/n】 與sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系數(shù)與n有關(guān) ,但與a無關(guān),記為Rn). 然后考慮sin(2n a)的系數(shù)為R2n=R2*(Rn)^2=Rn*(R2)^n.易證R2=2,所以Rn= 2^(n-1)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  兩角和公式

  cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ

  積化和差

  sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2

  雙曲函數(shù)

  sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α與 -α的三角函數(shù)值之間的關(guān)系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根號,包括{……}中的內(nèi)容

  誘導(dǎo)公式

  sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 誘導(dǎo)公式記背訣竅:奇變偶不變,符號看象限

  萬能公式

  sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]

  其它公式

  (1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 證明下面兩式,只需將一式,左右同除(sinα)²,第二個除(cosα)²即可 (4)對于任意非直角三角形,總有 tanA+tanB+tanC=tanAtanBtanC 證: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得證 同樣可以得證,當x+y+z=nπ(n∈Z)時,該關(guān)系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重點三角函數(shù) csc(a) = 1/sin(a) sec(a) = 1/cos(a)

http://m.ardmore-hotel.com/